Change Impact Analysis !

Melinda Téth, Istvan Bozé and Zoltan Horvath

EStvds Lorand University
Budapest, Hungary

November 3, 2011
Erlang User Conference, Stockholm

1Supported by TECH_08_A2-SZOMINO08, KMOP-1.1.2-08/1-2008-0002 and European Regional
Development Fund (ERDF)

Outline

@ Motivation

© Background

© Intermediate Source Code Representation

@ Test Case Selection

Motivation

Motivation

@ Refactoring legacy source code — RefactoringErlang

Motivation

Motivation

@ Refactoring legacy source code — RefactoringErlang

@ Regression test becomes necessary

Motivation

Motivation

@ Refactoring legacy source code — RefactoringErlang
@ Regression test becomes necessary

@ Reduce the number of test suits

Motivation

Motivation

Refactoring legacy source code — RefactoringErlang

Regression test becomes necessary

@ Reduce the number of test suits

Perform Program Slicing based Change Impact Analysis

Background

Refactoring — Source Code Transformation

Syntactic source code transformation
Preserves the meaning
Pre-conditions

Static program analysis

Background

RefactorErl

Static source code analyser and transformer tool

Platform for source code transformations — 24 implemented
refactorings

Rename

Move definition

Expression structure

Function interface

Parallelisation

Structural source code analysis — Clustering

Support for program comprehension

e Call graph visualisation
e Dependency analysis
e Semantic Query Language / Metric Query Language

@ Several interfaces

Background

Web Interface

RefactorErl Queries

® localhost

RefactorErl

nods [nane=appmon_txc]. funs

Save as skeleton

Queries Files Errors Dependency Graphs Log out melinda

Previous Queries | Running Queries.

Skeletons.

Previous Queries

My queries ¥
mods.funs
modsiname=appmonl funs

modsiname=sppmon telfun
H

@ Inbox-toth

File Browser

mods{name=appmon_txtl.funs

appmon _txt:print/1
appmon_txt:start/o
ppmon_txt:start/L

appmon_txterl

appmon txt:ui list_dialog/d
appmon_txtzeditori0
iabel

s

%% %CopyrightBegink

.

3% Copyright Ericsson AB 1996-2009. ALl Rights Reserved.

.

% The contents of tnis tile are subject to the Erlang Public License,
/%% Version 1.1, (the "License"); you may not use this file except in
56 compliance with the License. You should have received a copy of te
%% Erlang Public License along with this software. If not, it can

%% retrieved online at http://waw.erlang.org/.

5

Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and Limitati
%% under the License

FEEE

EE

%CopyrightEnd%

Simple text viewer

EEE

-module(appmon_t

export(latart o, Mart/1, print/1, forint/il).

%% gen_server sturf
handle call/3, hanole cast/2
[melinda@melind... @ Refactos

expor
[melinda@m

Background

Change Impact Analysis

Calculate the impact of a change on the source code
Changes made by manually or by a refactoring tool
Identify the affected code parts

Base on static program analysis and Program Slicing
techniques

Assistance in testing and debugging

Background

Brief Overview of Program Slicing

@ "“A program slice consists of the parts of a program that
(potentially) affect the values computed at some point of
interest (slicing criterion).” (Weiser, 1979)

@ Many forms of slicing:

Static — Dynamic

Forward — Backward

Executable — Not executable

Intraprocedural — Interprocedural

Dependence Graph — Data-flow equations — Information-flow
relations based approaches

Background

Our Approach

@ Slicing in a graph representation of the source code

o Different levels of intermediate source code representation
@ Steps in building the Dependency Graph:

© Control-Flow Graph

@ Postdominator Tree

© Control Dependence Graph

© Data-Flow Graph

© Behavior Dependence Graph

Intermediate Source Code Representation

Semantic Program Graph of RefactorErl

@ Lexical level

e Tokens

e Preprocessing

o Comments, whitespace
@ Syntactic level

o Abstract Syntax Tree
© Semantic level

e Module, function, record, variable nodes
o Links to definition and reference points
o lIdentifies side-effects, dynamic function references, etc.

Intermediate Source Code Representation

Factorial function

-module(fact) .

fact(0) -> 1;
fact(N) when N>0 ->
Nxfact (N-1).

pattern/1

-
body/1\visib/2

Intermediate Source Code Representation

o 5
ésub/z [dep/1 Jor

Imoddef/1

Intermediate Source Code Representation

Data-Flow Analysis

Technique for gathering information about the possible set of
values calculated at various points in a program

Goal: detecting direct and indirect data-flow and
data-dependency among expressions

Data Flow Graph - DFG
The nodes of the DFG are the expressions
An edge represents direct data-flow relation between two nodes

Data-flow reaching to calculate indirect flow

Intermediate Source Code Representation

Simple Data-Flow Rule for Erlang

A =3,
p is a binding of a variable: o
n is an occurrence of the same variable B=A+2
f
f $3 — $A

Intermediate Source Code Representation

Function Call Data-Flow Rule

€p-
f(er,...,en)
f/n:

1 1 1 1.
f(py,-..,py) when g1 — €5, ..., e
f(p"s-..,py) when g, — ef, ..., €]

1 f f
e,l—>eo,...,e,,’:—>e0
f f o m

f1q f
€ = Ppy---,€n = Py

Intermediate Source Code Representation

Function Call Data-Flow Rule

€0:
f(el)"‘7en)
f/n: myfun(A, B)->
‘1 1 1 1. C=A+B,
f(pi,...,pp) when g1 — e, ..., e, . B
; mycall()->
f(p{"s .-, pn') when gn — ef, ...,] {E1, E2, E3} = myfun(4,2),
El.
e,l1 — €0,..., € — €
f,
e1 —f> P%, ..., e —F> p:’l" ${A B, C} — $myfun(4,2)

s4 £ 54,92 £ 5B

Intermediate Source Code Representation

uncl/2
pattern/1
low/1
liep ~
.

(Ceer [47
Gom [o)

flow3 flow/2

lquard/1

oo [9
- (ariable [) Vorlabie | 1

Civeser [0

Intermediate Source Code Representation

Data-flow reaching

n%n (reflexive)

f
ny — np

of
ny ~» np

(f-rule)

Ci Of S;
ny — np, N2 ~> N3, N3 — N4

oF (c-s-rule)
ny ~ nNa

of f
ng ~» N, np ~> N3

of
n ~» n3

(transitive)

Intermediate Source Code Representation

Message sending rule

€p-
€1 ! €2
e .
receive e — €
p1 when g3 —
el el - f f
oo =i €2 — P1,---,€2 — Pn
' f
pn when g, — e,11 —e,... e =€
n n
ef,...,€e/ es—f>e’
after
e —ep,...,6s

end

Intermediate Source Code Representation

Detecting Message Passing via Data-Flow

f f
eZ*>p1,--~,e2*>pn

Intermediate Source Code Representation

Detecting Message Passing via Data-Flow

e spawn x (Mod, Fun, Args) A e, — backward data-flow

f f
eZ*>p1,--~,e2*>pn

Intermediate Source Code Representation

Detecting Message Passing via Data-Flow

e spawn x (Mod, Fun, Args) A e, — backward data-flow

om o Mod — backward data-flow

o f o Fun — backward data-flow

f f
ezﬁpla”'aezﬁpn

Intermediate Source Code Representation

Detecting Message Passing via Data-Flow

spawn x (Mod, Fun, Args) % e; — backward data-flow

m o Mod — backward data-flow

f 9 Fun — backward data-flow

[Elemy, ..., Elem))] 9 Args — backward data-flow

f f
ezﬁpla”'aezﬁpn

Intermediate Source Code Representation

Detecting Message Passing via Data-Flow

spawn x (Mod, Fun, Args) % e; — backward data-flow

m o Mod — backward data-flow
f o Fun — backward data-flow
[Elemy, ..., Elem))] 9 Args — backward data-flow

e’ is reachable from m: f /n — call-chain

f f
ezﬁpla”'aezﬁpn

Intermediate Source Code Representation

Detecting Message Passing via Data-Flow

spawn x (Mod, Fun, Args) % e; — backward data-flow

m o Mod — backward data-flow
f o Fun — backward data-flow
[Elemy, ..., Elem))] 9 Args — backward data-flow

e’ is reachable from m: f /n — call-chain

registered names — 2 bw data-flow, 1 fw data-flow + reg.
name usage

f f
ezﬁpla”'aezﬁpn

Intermediate Source Code Representation

Control-flow Analysis

Technique for determining the control flow of a program
Control-Flow Graph - CFG

Every execution path

The nodes of the CFG are the expressions

An edge represents direct control-flow relation between two
nodes

Intermediate Source Code Representation

Simple Control-Flow Rule

€0- €p-

€10 e {e1,...,en}

/ /

€1 — € €1 —> €2, ..., €n—1 — €Ep

€ — € eén — €

Intermediate Source Code Representation

Example CFG

fact(0) -> 1;
fact(N) when N>0 ->
Nxfact (N-1).

RETURN(form, 1)

Intermediate Source Code Representation

Control Dependency Analysis

e Control dependence is a relation when an expression of a
program is evaluated if a previous expression evaluates in a
way that allows its evaluation

e Eliminating unnecessary sequencing
simplefun()->

A
B

2+ 4,
4+ 2,

Intermediate Source Code Representation

Building Postdominator Tree

@ Postdominator relation: j
postdom i, if every execution
path from i to exit includes j

@ Immediate postdominator: j is
ipostdom of i, if and only if j
postdom i and does not exists a
node k such that i # k and j #
k for which k postdom i and j
postdom k.

RETURN(form, 1)

v

\

X
¢
\

" N—

Building Postdominator Tree (cont.)

Intermediate Source Code Representation

Building Postdominator Tree

@ Postdominator relation: j
postdom i, if every execution
path from i to exit includes j

@ Immediate postdominator: j is
ipostdom of i, if and only if j
postdom i and does not exists a
node k such that i # k and j #
k for which k postdom i and j
postdom k.

RETURN(form, 1)

Intermediate Source Code Representation

Building Postdominator Tree (cont.)

dummy_exit_node

RETURN(form, 1)

Intermediate Source Code Representation

Building the Control Dependence Graph

j is control dependent from
i iff
o Exists a path from i to
j, and V k from this
path, k ZiNk #£j]
postdominates k
@ j does not
postdominate i

ERROR(form, 1)

dummy_exit_node

Intermediate Source Code Representation

Building CDG (con

inhdep

Intermediate Source Code Representation

Building a Dependence Graph

@ Extend the control dependence graph with data dependency
and data flow edges

resdep

inhdep

Test Case Selection

Test Case Selection through Program Slicing

Our goal: perform impact analysis through static program
slicing

Selecting test cases that are represented as Erlang functions
(QuickCheck, EUnit, etc.)

Not executable static forward slicing to select test suits of the
program that should be rechecked due to a change at the
selected point

The slicing criterion is a set of vertices in the graph
corresponding to the changed expressions in the source code
after a refactoring

Follow the control dependency and data dependency edges in
the dependence graph (reachability problem in the dependence
graph)

Summary

@ Selecting test cases (QuickCheck, EUnit, etc.) after a change
on the source code

@ Slicing will be part of RefactorErl from January, 2012

o Components of the analysis toolset are already available:
Side effect analysis

Data-flow analysis to calculate values of an expression
Dynamic function call analysis

Detecting data-flow among processes

o Composing existing static analysis towards:

Deadlock detection

Detecting process structure based on data-flow relations
Detecting parallelisable program parts

Detecting design patterns

http://plc.inf.elte.hu/erlang

	Motivation
	Background
	Intermediate Source Code Representation
	Test Case Selection
	Summary

