

To take part in the action...To take part in the action...

●Ensure you have a working Erlang installation
●Grab my snapshot of Erlyvideo:

> git clone
https://github.com/aronisstav/erlyvideo.git

●Build it (after possibly changing rebar.config)
> make

● Invoke this curious command:
> dialyzer --output_plt my_plt --build_plt --apps
erts kernel stdlib

https://github.com/aronisstav/erlyvideo.git

How to start using Dialyzer in
your project

How to start using Dialyzer in
your project

Stavros Aronis

dialyzer@softlab.ntua.gr

OutlineOutline

● Why should you be using it?

● How to set it up and run it?

● How to handle warnings reported by it?

● New features available soon!

Why should you be using it?Why should you be using it?

● No modifications in your code required

● Can detect discrepancies early

● Can check the consistency between the documentation
and the implementation

● Is really mature and constantly improving

● You are being watched! (http://dialyzer.softlab.ntua.gr)

● Is never wrong!

http://dialyzer.softlab.ntua.gr/

Setting it upSetting it up

● Make things easy

● What to analyze and how to prepare

● The Persistent Lookup Table

● How to keep track of existing vs new warnings

Make things easyMake things easy

● Dialyzer can be run as another “test”:
● make dialyzer

● Should be able to keep track of:
● Actual changes in your code (is a re-run required?)

● The Persistent Lookup Table

● Existing warnings vs new ones

What to analyze?What to analyze?

● All your “actual” code.
● your:

● External applications
– shouldn't be analyzed
– Belong to the PLT

● “actual”:
● “Testing” code will produce warnings
● Instead of filtering these out, avoid them in the first

place

How to prepare your code?How to prepare your code?

● Dialyzer needs access to the source code
● … but analysis from source code requires:

● Included files to be added explicitly
● Parse transformations to be in the code path

● … just like the compiler!
● Use compiled modules: .beam files as input
● … compiled with +debug_info

The Persistent Lookup TableThe Persistent Lookup Table

● Your application will call OTP functions.
● You don't need to re-analyze these every time!
● The same applies to any other “external”

application
● The Persistent Lookup Table (PLT) can store

results of the analysis of these modules and
consult them when finding calls to them

● dialyzer --output_plt my_plt
--build_plt --apps erts kernel
stdlib

Existing vs. new warningsExisting vs. new warnings

● When initially run, Dialyzer might report some
warnings

● Fix them at your own pace...
● … keeping track of them so:

● You record your progress
● You do not introduce new discrepancies

● Do NOT add specs/types before fixing existing
warnings!

ACTION!ACTION!

● If you have prepared Erlyvideo:
● git clone https://github.com/aronisstav/erlyvideo.git

● make

● See this setup in action:
● git remote update

● git checkout 7e7db8

● OR: git show 7e7db8

● Run 'make dialyzer'
● To speed this up: kill it, copy my_plt to
test/dialyzer/plt and run it again!

https://github.com/aronisstav/erlyvideo.git

How to handle warnings?How to handle warnings?

● We got a long list of warnings

● How to actually debug a warning?

● Where to begin?

Debugging warningsDebugging warnings

● Try to minimize the modules that produce the
warning.

● Beginning with the module that includes the
warning...

● … run:
– make; dialyzer ebin/buggy.beam

● … if it doesn't show up add some of the
unknown modules.

● When you can get it it's time for action!

The call will never return...The call will never return...

“The call to <module>:<function>(<Args with
types>)
● will never return”
● does not have opaque terms ...”

Can be fixed by:
● Checking the documentation
● Respecting opaque types
● Correcting a possibly wrong spec

The call will never return...The call will never return...

● OTP documentation related:
● Such examples are filename:join calls with

atoms as arguments and file:open calls with a
single atom denoting “mode” instead of an option
list. In these cases you should consult the
documentation and adhere to it.

● Investigating dubious specs
● run Dialyzer with the --no_spec flag to see if the

problems disappear. If this is the case you should
fix the specifications.

Function has no local returnFunction has no local return

● “Function <function>/<arity> has no local
return”
● Usually eliminated along with the failing calls
● If not, you might have to follow a chain of calls
● (A function with no local return will often be the

reason for an identical warning in any function that
calls it).

Record construction violates the
declared type of field(s)

Record construction violates the
declared type of field(s)

● “Record construction <record> violates the
declared type of field(s) <field>::<type>”
● Comment out the types of the record’s fields
● re-introduce them in an incremental way, adding

any missing values to the type.

More informationMore information

● Initial submission was a ~15 page guide with
more information on:
● Tricks to analyze faster (aka “enable HiPE”)
● Common causes for Dialyzer crashes
● Usage of TypEr during debugging
● More details on other warnings
● General advice on modernizing specs/types

● Soon to be available on Dialyzer's site
● Already available by e-mail :-)

Dialyzer's developmentDialyzer's development

● Behaviour usage analysis
● Appropriate implementation of callbacks
● Makes use of the new “-callback” Erlang attribute,

used to specify a behaviour's callbacks
● To be included in R15

● Stronger “success typing” inference
● Keeping relations between arguments/results

● More concurrency error detection
● “Lost” messages, deadlocks

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

