
A PropEr Creation

Kostis Sagonas

Kostis Sagonas A PropEr Creation

Overview
 Introductory rambling part:

– How PropEr was created

– Myths vs. reality
 A taste of PropEr technology
 Some PropEr advice
 Current uses and exciting projects using PropEr
 PropEr thoughts on open- vs. closed-source

software development in Erlang
 PropEr thoughts on licenses

Kostis Sagonas A PropEr Creation

How PropEr was created
 A Canada trip: Montreal, September 2000

Kostis Sagonas A PropEr Creation

How PropEr was created
 Another Canada trip: Victoria, September 2008

Kostis Sagonas A PropEr Creation

How PropEr was created

From John Hughes (20/10/2008):

… By the way, we'd be happy to supply an academic
licence for QuickCheck for your student in Greece,
on the same terms as to our ProTest partners. The
advantage over doing something yourself based on
… <IDEA> ... would be that you would get our
compositional approach to shrinking built-in, which
makes it very easy to define, use, and combine
shrinking strategies. In fact, it would be very
interesting to see if he can come up with some smart
ways of deriving generators automatically, or more
easily. This is one of the most important areas for
improvement in this kind of testing.

Kostis Sagonas A PropEr Creation

How PropEr was created
My reply:

Indeed it is. I'll think about it ... that particular student is not
committed yet. One thing is for certain though: I have no grants
here, so even one Euro for a licence of any sort is one Euro too
much :-(

From John Hughes (21/10/2008):

Well, I suppose an alternative is that the student deliver something
of value to us... like a report or whatever, so that we could
"sponsor" the project with a licence. It does cost us a little bit to
provide one, but if there's something useful that comes out of the
project, then we could take that cost. I guess we'd want the right
to make use of any results royalty-free in return (although
presumably you'd be planning to publish any interesting results
anyway, so the question is really pretty moot).

Kostis Sagonas A PropEr Creation

How PropEr was created
 A trip at the Erlang Factory, London, June 2009

– QuickCheck tutorial
 Back in Athens, October/November 2009

Kostis Sagonas A PropEr Creation

How PropEr was created
 Athens, November 2009 – March 2010

– Complete support for properties and generators
?FORALL/3, ?LET, ?IMPLIES, ?SUCHTHAT/3,
?SHRINK/2, ?LAZY/1, ?SIZED/2, …
aggregate/2, choose2, oneof/1, …

 Athens, March 2010 – May 2010
– Complete intregration with types and specs

 Stockholm, April 2010
– I hear about Trifork’s Triq implementation

 London, June 2010
– QuviQ announces EQC Mini

Kostis Sagonas A PropEr Creation

How PropEr was created
 Athens, September/October 2010

– Plans to extend PropEr with component for
testing stateful systems

 Athens, November 2010 – March 2011
– Implementation of ‘statem’

 San Francisco, March 2011
– Informal announcement of PropEr

 Athens, April/May 2011
– Implementation of ‘fsm’

 London, June 2011
– A PropEr announcement of the tool

Kostis Sagonas A PropEr Creation

Myth vs. reality

“We reversed-engineered QuviQ QuickCheck by
access to its code or from its bytecode”
None of us ever used EQC or owned a copy

EQC Mini was released after we already had more (all?)
of its functionality in PropEr

None of the PropEr developers ever used EQC Mini
since then (not even to check compatibility with PropEr)

A clean-room implementation from scratch

“Inspiration” from open-source projects (github)

Help from some EQC users

Kostis Sagonas A PropEr Creation

Myth vs. reality

“... it is quite easy to be in a position where you
are funded by external bodies, in the case of
PropEr being funded by a large university and
also EU grants, and then afford to give the
software away for free...”
We received absolutely no funding for working on PropEr

There is actually NO MONEY at all in Greece, let alone
research grants from the University or government !

The National Technical University of Athens has NOT
been part of the ProTest EU project

Kostis Sagonas A PropEr Creation

Myth vs. reality

“... I also think it makes it a tad rich to release it
under something as restrictive as the GPL
given that it's the profits of the commercial
companies, by virtue of paying taxes, that have
in effect funded the software...”
We received absolutely no funding for working on PropEr

Whether EU funded reseach projects should give back
their research outcome back to society for free under
unrestricted licenses is a matter of debate...

Kostis Sagonas A PropEr Creation

PropEr

A Property-based Testing Tool for Erlang
 Available open source under GPL v3

(more on that later...)
 Has support for

− Writing properties and test case generators
− Concurrent/parallel “statem” and “fsm” testing

 Full integration with the language of types and
function specifications

− Generators often come for free!

Kostis Sagonas A PropEr Creation

Testing simple properties (1)
-module(simple_props).

%% Properties are automatically exported.
-include_lib("proper/include/proper.hrl").

%% Functions that start with prop_ are considered properties
prop_t2b_b2t() ->
 ?FORALL(T, term(), T =:= binary_to_term(term_to_binary(T))).

1> c(simple_props).
{ok,simple_props}
2> proper:quickcheck(simple_props:prop_t2b_b2t()).
...
...
OK: Passed 100 test(s)
true

Kostis Sagonas A PropEr Creation

Testing simple properties (2)

%% Testing the base64 module:
%% encode should be symmetric to decode:

prop_enc_dec() ->
 ?FORALL(Msg, union([binary(), list(range(1,255))]),

 begin
 EncDecMsg = base64:decode(base64:encode(Msg)),
 case is_binary(Msg) of
 true -> EncDecMsg =:= Msg;
 false -> EncDecMsg =:= list_to_binary(Msg)
 end
 end).

Kostis Sagonas A PropEr Creation

PropEr integration with simple types

%% Using a user-defined simple type as a generator
-type bl() :: binary() | [1..255].

prop_enc_dec() ->
 ?FORALL(Msg, bl(),

 begin
 EncDecMsg = base64:decode(base64:encode(Msg)),
 case is_binary(Msg) of
 true -> EncDecMsg =:= Msg;
 false -> EncDecMsg =:= list_to_binary(Msg)
 end
 end).

Kostis Sagonas A PropEr Creation

PropEr shrinking

%% A lists delete implementation
-spec delete(T, list(T)) -> list(T).
delete(X, L) ->
 delete(X, L, []).

delete(_, [], Acc) ->
 lists:reverse(Acc);
delete(X, [X|Rest], Acc) ->
 lists:reverse(Acc) ++ Rest;
delete(X, [Y|Rest], Acc) ->
 delete(X, Rest, [Y|Acc]).

prop_delete() ->
 ?FORALL({X,L}, {integer(),list(integer())},
 not lists:member(X, delete(X, L))).

Kostis Sagonas A PropEr Creation

PropEr shrinking

41> c(simple_props).
{ok,simple_props}
42> proper:quickcheck(simple_props:prop_delete()).
...!
Failed: After 42 test(s).
{12,[-36,-1,-2,7,19,-14,40,-6,-8,42,-8,12,12,-17,3]}

Shrinking ...(3 time(s))
{12,[12,12]}
false

Kostis Sagonas A PropEr Creation

PropEr integration with types

prop_delete() ->
 ?FORALL({X,L}, {integer(),tree(integer())},
 not lists:member(X, delete(X, L))).

-type tree(T) :: 'leaf' | {'node',T,tree(T),tree(T)}.

%% A tree delete implementation
-spec delete(T, tree(T)) -> tree(T).
delete(X, leaf) ->
 leaf;
delete(X, {node,X,L,R}) ->
 join(L, R);
delete(X, {node,Y,L,R}) ->
 {node,Y,delete(X,L),delete(X,R)}.

join(leaf, T) -> T;
join({node,X,L,R}, T) ->
 {node,X,join(L,R),T}.

Kostis Sagonas A PropEr Creation

What one would have to write in EQC

tree(G) ->
 ?SIZED(S, tree(S, G)).

tree(0, _) ->
 leaf;
tree(S, G) ->
 frequency([

 {1, tree(0, G)},
 {9, ?LAZY(

 ?LETSHRINK(
 [L, R],

 [tree(S div 2, G), tree(S div 2, G)],
 {node, G, L, R}

))}
]).

Kostis Sagonas A PropEr Creation

What one has to write in PropEr

This slide intentionally left blank

Kostis Sagonas A PropEr Creation

Integration with recursive types

41> c(mytrees).
{ok,mytrees}
42> proper:quickcheck(mytrees:prop_delete()).
.......................!
Failed: After 24 test(s).
{6,{node,19,{node,-19,leaf,leaf},
 {node,6,leaf,{node,6,leaf,leaf}}}}

Shrinking .(1 time(s))
{6,{node,6,{node,6,leaf,leaf}}}
false

Kostis Sagonas A PropEr Creation

Generators from recursive types

Takes place, roughly, in the following steps
 Detect recursion
 Inline (non-recursive) type definitions
 Normalize by pushing unions to the top level
 Find base cases
 Prepare the recursive calls
 Determine shrinking behavior
 Compose a generator

Kostis Sagonas A PropEr Creation

Example: detecting recursion

Kostis Sagonas A PropEr Creation

Example: after inlining

Kostis Sagonas A PropEr Creation

Example: after normalization

Kostis Sagonas A PropEr Creation

Example: the generated generator

Kostis Sagonas A PropEr Creation

PropEr integration with remote types

-type array_opt() :: ’fixed’ | non_neg_integer()
 | {’default’, term()}
 | {’fixed’, boolean()}
 | {’size’, non_neg_integer()}.
-type array_opts() :: array_opt() | [array_opt()].

 We want to test that array:new/0 can handle
any combination of options

 Why write a custom generator (which may rot)?
 We can use the remote type as a generator!

-module(types).
-include_lib("proper/include/proper.hrl").

prop_new_array_opts() ->
 ?FORALL(Opts, array:array_opts(),
 array:is_array(array:new(Opts))).

Kostis Sagonas A PropEr Creation

PropEr testing of specs

-module(myspecs).

-export([divide/2, filter/2, max/1]).

-spec divide(integer(), integer()) -> integer().
divide(A, B) ->
 A div B.

-spec filter(fun((T) -> term()), [T]) -> [T].
filter(Fun, List) ->
 lists:filter(Fun, List).

-spec max([T]) -> T.
max(List) ->
 lists:max(List).

Kostis Sagonas A PropEr Creation

1> c(myspecs).
{ok,myspecs}
2> proper:check_spec({myspecs,divide,2}).
!
Failed: After 1 test(s).
An exception was raised: error:badarith.
Stacktrace: [{myspecs,divide,2}].
[0,0]

Shrinking (0 time(s))
[0,0]
false
 AFTER FIXING THE PROBLEMS
42> proper:check_specs(myspecs).

PropEr testing of specs

Kostis Sagonas A PropEr Creation

PropEr uses

Kostis Sagonas A PropEr Creation

PropEr uses

Kostis Sagonas A PropEr Creation

Some observations from PropEr uses

 Erlang’s type language is often less expressive
than desired for property-based testing
– e.g. not possible to specify that binaries should

contain valid UTF8 characters
 Function specs cannot express argument

dependencies
– e.g. dependencies between args of

lists:nth/2
 Users often under-specify function domains
 Function signatures can often be used as simple

specifications of functions

Kostis Sagonas A PropEr Creation

Lessons learned

 Unit testing and property-based testing require
different mindsets
– Difficult to come up with “interesting” properties

– Tricky to express them
• often one debugs the property rather than the code

 Writing generators for recursive types is tricky
and requires significant time and effort
– PropEr significantly eases this task

Kostis Sagonas A PropEr Creation

Some PropEr advice

 Start with testing the functional core
 Break the testing into smaller, simpler to express

(partial) correctness properties
 Write properties for readability
 For generators of recursive datatypes

– Just write the data type and rely on PropEr

– Put a global size bound if the above is not enough

– Only if the steps above are not enough resort to
using ?LAZY/1, ?LETSHRINK/1, resize, …

Kostis Sagonas A PropEr Creation

More info on our PropEr website

Kostis Sagonas A PropEr Creation

Open vs. closed source tools

 All developers of PropEr are firm believers of the
value of open source development tools

 Many advantages:

– More eyes that read code ⇒ more robust code

– Easier to understand how the software works

– Allows for user contributions (hopefully!)

– ...
 More advantages if software is also free:

– The Greek population can afford them!

Kostis Sagonas A PropEr Creation

PropEr licence

 GPL v3
 Long series of mail exchanges with the FSF
 …
 For the time being:

– GPL v3 but ...

– with a (still implicit) Open-Source Exception

Kostis Sagonas A PropEr Creation

Thanks from the PropEr developers!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

