
Load Regulation in 
Erlang

A Practical Application

Dave Smith
Basho Technologies

Thursday, 3 November 2011



First, a story...

• Two Engineers...

• A bit of Erlang tracing code...

• Writing to a zlib’d file...

Thursday, 3 November 2011



Why Regulation?

• Load can shift rapidly

• Bursty traffic patterns

• Hardware/software failure

• Layer of defense

Thursday, 3 November 2011



Why Riak?

• Distributed Erlang

• Reputation for performance and 
predictability

• Want to push envelope on failing gracefully

Thursday, 3 November 2011



JOBs

• Queue

• Time/Size Restriction

• Regulator 

• Counter

• Rate-based

Thursday, 3 November 2011



Applied JOBs

• Simple integration w/ existing APIs

• Restricted to GET/PUT operations

• Evaluated max-rate and max-concurrent

Thursday, 3 November 2011



Code (simple!)
case jobs:ask(riak_kv_fsm) of
{ok, JobId} ->
  try
    {ok, Pid} = riak_kv_get_fsm_sup:start_get_fsm(...),

      Timeout = recv_timeout(Options),
      wait_for_reqid(ReqId, Timeout)

after
    jobs:done(JobId)

    end;

{error, rejected} ->            %% Overload!
  {error, timeout}

end

Thursday, 3 November 2011



Approve vs. Rate

Thursday, 3 November 2011



Observations

• Low overhead (3-4 ms under duress)

• Improves latency profile (flatter)

• May improve sustainable throughput

Thursday, 3 November 2011



Overload Throughput

Happy

Overload

Thursday, 3 November 2011



Overload Latency

Happy

Overload

Thursday, 3 November 2011


