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First, a story...

• Two Engineers...

• A bit of Erlang tracing code...

• Writing to a zlib’d file...
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Why Regulation?

• Load can shift rapidly

• Bursty traffic patterns

• Hardware/software failure

• Layer of defense
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Why Riak?

• Distributed Erlang

• Reputation for performance and 
predictability

• Want to push envelope on failing gracefully

Thursday, 3 November 2011



JOBs

• Queue

• Time/Size Restriction

• Regulator 

• Counter

• Rate-based
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Applied JOBs

• Simple integration w/ existing APIs

• Restricted to GET/PUT operations

• Evaluated max-rate and max-concurrent
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Code (simple!)
case jobs:ask(riak_kv_fsm) of
{ok, JobId} ->
  try
    {ok, Pid} = riak_kv_get_fsm_sup:start_get_fsm(...),

      Timeout = recv_timeout(Options),
      wait_for_reqid(ReqId, Timeout)

after
    jobs:done(JobId)

    end;

{error, rejected} ->            %% Overload!
  {error, timeout}

end
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Approve vs. Rate
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Observations

• Low overhead (3-4 ms under duress)

• Improves latency profile (flatter)

• May improve sustainable throughput
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Overload Throughput

Happy

Overload
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Overload Latency

Happy

Overload
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