
Erlang Solutions Ltd.

© 1999-2011 Erlang Solutions Ltd.

Log Analysis With Exago

© 1999-2011 Erlang Solutions Ltd.

Get Exago

• https://github.com/et4te/ExagoE

• You might want to install GraphViz to generate
schemas

2

© 1999-2011 Erlang Solutions Ltd.

Logs: they are important

• The best test is sending things in production
- Nothing represents production conditions like

production itself

• Logs are often the only way to know what
happens in production

• Logs can be problematic
- What format to keep them in
- how to interpret them
- How to find the source of problems

3

© 1999-2011 Erlang Solutions Ltd.

How Exago Works

4

event
sourcelog

generating
models

Analyse/
compare
models

© 1999-2011 Erlang Solutions Ltd.

Logs

5

• Incredible variety in the wild

• Text: ASCII, Unicode, Latin-1, Constants, etc.

• Separators: white space, -, #, byte length, etc.

• Fields: ID, IP, Host, names, domains, time

• Time Stamps

• Purpose:
- human readability
- write speed, space efficiency
- indexing, search.

© 1999-2011 Erlang Solutions Ltd.

Event Source

• Event sourcing is about telling Exago how to
parse logs (text-based) and read them

• Exago accepts lists of lists as a final format
- Format is Lines = [Fields=[A,B,...]]

• For now, Exago only provides basic CSV as a
format supported out of the box, but it is
possible to add more.

• Exago also provides basic data types for id's,
foreign keys, etc.

6

© 1999-2011 Erlang Solutions Ltd.

Event Source: Field Types

All fields parsed by the exa_field module
instance_key

Identifier representing the instance of the program that
the message came from. A "session" identifier.
instance_key("id", Type)

foreign_key
Allows to take a field of the file and describe it as a
reference to an entry in another log file
foreign_key("LocalName", Type,
 EventSourceOfKey, "ForeignName",
 [FieldsToInclude]).

7

© 1999-2011 Erlang Solutions Ltd.

Event Source: Field Types
annotation

Gives a name to a field that is not useful at first glance,
but can be used to filter events or when modifying fields
annotation("Name", Type)

timestamp
timestamp("Name", rfc3339)
timestamp("Name", partial, Format)
Format = [date_fullyear, date_month,
 date_mday, time_hour, time_minute,
 time_second, time_secfrac,
 time_numoffset_hour, time_numoffset_minute]

8

© 1999-2011 Erlang Solutions Ltd.

Event Source: Field Types

transition
An event that makes a program move to one state to the
other.
Setting transitions allows Exago to transform the logs
into a finite-state machine.
transition("EventName", Type)

state
Define a state name to be used in a finite state machine
defining the current status.
state(Name, Type)

9

© 1999-2011 Erlang Solutions Ltd.

1,1,2010-10-12 16:00:00:0000000,forward
1,2,2010-10-12 16:00:01:0000000,forward
1,3,2010-10-12 16:00:02:0000000,forward
1,3,2010-10-12 16:00:03:0000000,stop
2,1,2010-10-12 16:01:00:0000000,forward
2,2,2010-10-12 16:01:01:0000000,forward
2,3,2010-10-12 16:01:02:0000000,stop

Event Source: Row Formats

10

id, integer
foreign key, integer

timestamp
transition, atom

© 1999-2011 Erlang Solutions Ltd.

1,start
2,state_1
3,state_2
4,state_3
5,state_4

Event Source: Row Formats

11

annotation
 (foreign key) state, string

© 1999-2011 Erlang Solutions Ltd.

event_source_1() ->
 {"sample_1",
 [{csv, absolute, "./log_files/sample_1.log"}],
 row_format_1()}.
event_source_2() ->
 {"sample_2",
 [{csv, absolute, "./log_files/sample_2.log"}],
 row_format_2()}.

Event Source: Row Formats

• Standard way to define event sources is to:
• Give them a name
• define how to open the file(s)
-absolute for precise filenames, wildcard to match on multiple file names

• A row format specification

12

© 1999-2011 Erlang Solutions Ltd.

Event Source: Row Formats
row_format_1() ->
 [exa_field:instance_key("id", integer),
 exa_field:foreign_key("foreignKey",integer, "sample_2",
 "linkKey", ["state"]),
 exa_field:timestamp("timestamp", partial,
 [date_fullyear, date_month,
 date_mday, time_hour, time_minute,
 time_second, time_secfrac]),
 exa_field:transition("move", atom)].

row_format_2() ->
 [exa_field:annotation("linkKey", integer),
 exa_field:state("state", string)].

13

© 1999-2011 Erlang Solutions Ltd.

combined_event_source() ->
{"sample_combined",
 exa_es:collect([event_source_1(), event_source_2()],
 absorb, implicit_state)}.

Event Source: Combining Sources

• An event source is of the form {"NameOfSource", Source}
• The source itself is given by

exa_es:collect([ListOfSources], absorb|append,
implicit_state|source_state).
-absorb: used for logs with external keys; like a table join between files.

-append: used for logs of the same format; useful for things like log
rotation.

-implicit_state: the state is defined in the log file

-source_state: the event source's name acts as the state

14

© 1999-2011 Erlang Solutions Ltd.

Event Source: Result
{"sample_combined",
 [{complete_result,
 [{instance_key,{field_identifier,"id"},{field_value,1}},
 {foreign_key,field_identifier,"foreignKey"},
 {field_value,{foreign_reference,
 {"sample_2",1,"linkKey".["state"]}}}},
 {state,{field_identifier,"state"},
 {field_value,"start"}},
 {timestamp,{field_identifier,"timestamp"},
 {field_value,[{2010,date_fullyear}, ...}]},
 {transition,{field_identifier,"move"},
 {field_value,forward}}],
 field_format_eq},
 ...

15

© 1999-2011 Erlang Solutions Ltd.

Event Source

• Only a few fields are mandatory: instance_key,
timestamp, transition. State can be derived, but it
is useful to specify it.

• The Event Source allows to build an intermediary
format that Exago can understand to base its
analysis on.

• Exago can absorb event sources and generate
finite-state machine models based on them.

• Exago can generate graphical representations of
the models (using graphviz)

16

© 1999-2011 Erlang Solutions Ltd.

Generating Basic State Machines

• Using the event source, Exago can generate two
kinds of state machines:
- uniques: each sequence of logs (based on instance

keys) creates one state machine
- combined: all sequences of logs are combined into

one large state machine.

• Exago can return abstract state machines defined
in Erlang terms or a graphical state machine
representations

17

© 1999-2011 Erlang Solutions Ltd.

Generating Basic State Machines
2> exa:generate_combined(Source, []).
{[{1,init_state},{2,start},{3,state_1},{4,state_2}],
 [{1,forward,2}, {2,forward,3}, {3,forward,4}, {3,stop,4},
 {4,stop,4}],
 {autogen_possible,true}}

3> exa:generate_uniques(Source, []).
[{[{1,init_state},{2,start},{3,state_1},{4,state_2}],
 [{1,forward,2},{2,forward,3},{3,forward,4},{4,stop,4}],
 {autogen_possible,true}},
 {[{4,state_2},{1,init_state},{2,start},{3,state_1}],
 [{1,forward,2},{2,forward,3},{3,stop,4}],
 {autogen_possible,true}}]

18

© 1999-2011 Erlang Solutions Ltd.

3> exa:generate_uniques(Source,
[{visualize, {true, "."}}]).
[{[{1,init_state},...,
 [{1,forward,2},{2,forward,3},
 {3,forward,4},{4,stop,4}],
 {autogen_possible,true}},

 {[{4,state_2},
 {1,init_state},
 {2,start},
 {3,state_1}],
 [{1,forward,2},{2,forward,3},
 {3,stop,4}],
 {autogen_possible,true}}]

Generating Basic State Machines

19

© 1999-2011 Erlang Solutions Ltd.

3> exa:generate_combined(Source,
[{visualize, {true, "."}}]).
{[{1,init_state},{2,start},
 {3,state_1},{4,state_2}],
 [{1,forward,2},
 {2,forward,3},
 {3,forward,4},
 {3,stop,4},
 {4,stop,4}],
 {autogen_possible,true}}

Generating Basic State Machines

20

© 1999-2011 Erlang Solutions Ltd.

Writing State Machines by Hand

• Writing state machines by hand can be done by
re-using the format output when generating
them automatically

• {[{StateId, StateName},...],
 [{InState, Event, ChangeToState}],
 {autogen_possible, true}}.

21

© 1999-2011 Erlang Solutions Ltd.

Running FSMs against event sources

• Finite State Machines correspond to a model of
the behaviour the application should take.

• An expected state machine can be ran against an
actual event source to compare its behaviour to
what was expected
- exa:execute(FSM, EventSource).

• A given state machine can be ran against another
state machine to verify whether the first one is a
subset of the second one
- exa:execute(FSM1, FSM2).

22

© 1999-2011 Erlang Solutions Ltd.

11> [First|_] = exa:generate_uniques(Source, []).
[{[{1,init_state},...], [{1,forward,2},...]
 {autogen_possible,true}},
 {...}]
12> exa:execute_fsm_source(First, Source).
[[{fsm_instance_0,normal_state,
 [{init_state,forward},
 {start,forward},
 {state_1,forward},
 {state_2,stop}]}],
 [{fsm_instance_0,model_error,
 [{init_state,forward},
 {start,forward},
 {state_1,no_transition}]}]]

Comparing FSMs: Example

23

Taking the first
FSM only

Comparing it
against 2 different

sessions in the
event source

Same source as
before

© 1999-2011 Erlang Solutions Ltd.

15> [First,Second] = exa:generate_uniques(Source, []).
[{[{1,init_state},...],[{1,forward,2},...],
 {autogen_possible,true}},
 {[{4,state_2}, ...],
 [{1,forward,2},...], {autogen_possible,true}}]
16> exa:execute_fsm_fsm(First,Second).
[{fsm_instance_0,model_error,
 [{init_state,forward},
 {start,forward},
 {state_1,no_transition}]}]

Comparing FSMs: Example

24

Taking both FSMs

Comparing them
together to see if

the models fit

Same source as
before

© 1999-2011 Erlang Solutions Ltd.

18> General = exa:generate_combined(Source, []).
{[{1,init_state}, ...],
 [{1,forward,2}, ...],
 {autogen_possible,true}}
19> exa:execute_fsm_fsm(First, General).
[{fsm_instance_0,normal_state,
 [{init_state,forward},
 {start,forward},
 {state_1,forward},
 {state_2,stop},
 {state_2,stop}]}]

Comparing FSMs: Example

25

Using a combined
FSM

Comparing one of
the unique FSM to
the general one

Same source as
before

© 1999-2011 Erlang Solutions Ltd.

state_format() ->
 [exa_state:state(start, error),
 exa_state:state(state_1, normal),
 exa_state:state(state_2, accept)].

Refining FSMs

• Not all states of a finite-state machine are born equal
• The current FSMs are making no distinction between what is a

good state or a bad state to finish in.
• We must augment the FSMs to be able to give meaning to such

states.
• The meaning can be error, normal or accept.

26

© 1999-2011 Erlang Solutions Ltd.

Annotating FSMs: Examples
33> exa:execute_fsm_source(
33> exa_sm:augment_model(
33> First,
33> [exa_state:state(state_2, error)]),
33> Source).
[[{fsm_instance_0,error_state,
 [{init_state,forward},
 {start,forward},
 {state_1,forward},
 {state_2,stop}]}],
 [{fsm_instance_0,model_error,
 [{init_state,forward},
 {start,forward},
 {state_1,no_transition}]}]]

27

© 1999-2011 Erlang Solutions Ltd.

Transition Modifiers

• Outside of the scope of the tutorial

• They allow to modify the event source during
different stages of parsing

• They let you combine many fields or modify them
to give a new event source

• Allows for smarter control of the event source

28

© 1999-2011 Erlang Solutions Ltd.

2010-10-12 16:50:00:0821546,1286898600821546,close,1
2010-10-12 16:50:00:0821866,1286898600821866,move,1,up
2010-10-12 16:50:01:0822515,1286898601822515,approaching,1,2
2010-10-12 16:50:02:0214074,1286898602214074,close,2
2010-10-12 16:50:02:0214403,1286898602214403,move,2,up

close_elevator_doors (first elevator)
move_elevator_up (first elevator)
approaching_floor_2 (first elevator)
close_elevator_doors (second elevator)
move_elevator_up (2nd elevator)
etc.

Transition Modifier: What's possible

Can give states such as

29

© 1999-2011 Erlang Solutions Ltd.

{[{4,logged},{0,''},{1,locked},{2,unlogged},
 {3,init_state}],
 [{1,lock,1}, {1,unlocked,2}, {2,admin_locked,1},
 {2,denied,2}, {2,lock,1}, {2,logged,4}, {3,start,2}],
 {autogen_possible,true}}

Exercises

• Get the logs at https://gist.github.com/2c477f8d837bb784cf87
• parse the logs into a FSM that is compatible with Exago
• Is the FSM deterministic? Can it be used to automatically run

models?

30

© 1999-2011 Erlang Solutions Ltd.

UserName, TimeStamp, State, Event

Dwigth,2011-10-31 22:24:56:0950918,unlogged,start
Carl,2011-10-31 22:24:56:0952629,unlogged,start
Mike,2011-10-31 22:24:56:0954020,unlogged,start
Carl,2011-10-31 22:24:56:0954945,locked,admin_locked
Mike,2011-10-31 22:24:57:0052107,unlogged,denied
Mike,2011-10-31 22:24:57:0153185,unlogged,denied
Mike,2011-10-31 22:24:57:0254167,unlogged,denied
Mike,2011-10-31 22:24:57:0355174,locked,lock
Dwigth,2011-10-31 22:24:57:0451151,unlogged,denied
Dwigth,2011-10-31 22:24:58:0452175,unlogged,denied
Carl,2011-10-31 22:24:58:0951183,locked,lock
Mike,2011-10-31 22:24:58:0952313,unlogged,unlocked
Dwigth,2011-10-31 22:24:59:0203108,logged,logged
Mike,2011-10-31 22:25:00:0356109,unlogged,denied

31

