

Testing What Must Work
Not Only What Souldn't Fail

by Samuel Rivas

samuel.rivas@interoud.com

Testing plays an important role in development,
specially when many developers team together

You know testing is a powerful tool, what you
want to know is how to test more effectively

Even with zealous TDD, skilled development teams
can still introduce bugs without doing anything stupid

You can use property based
testing to build stronger tests

You need to understand what are the advantages
of property based testing to apply it effectively

Traditional test cases are concrete samples of behaviour
that developers, not computers, will generalise

√ sum(0,0) == 0

√ sum(0,1) == 1

√ sum (0,2) == 2

√ sum(1,1) == 2

√ sum(1,2) == 3

Sum(0,0) → 0;
Sum(0,1) → 1;
Sum(0,2) → 2;
Sum(1,1) → 2;
Sum(1,2) → 3.

A team builds a suite of test cases, and works towards
a generic solution that passes all of them

?assertEqual(

 "Erlang rulez!",

 template:apply(

 "@lang@ rulez!",[{"lang","Erlang"}])

A second team enhances the program,
passing new tests plus the former ones

?assertEqual("@",template:apply("@@",[]))

The new feature interacts with the old one
in a way existing tests don't describe

1> template:apply(

 "@name@@@@domain@",

 [{"name", "samuel.rivas" },

 {"domain", "interoud.com"}]).

** exception error:

 {variable_not_found,"name@@domain"}

We would like to describe the computer the behaviour
we want, and let it test it automatically

For all X, X+0 == X

For all X, X+1 == next(X)

For all X, Y, X+(Y+1) == (X+Y)+1

Sum(0,0) → 0;
Sum(0,1) → 1;
Sum(0,2) → 2;
Sum(1,1) → 2;
Sum(1,2) → 3.

A team gets a description of the same
template library and writes a property

For all template T, list of variables X,

and list of substitutions X’, apply(T, X) yields

T with X values switched to those of X’

Extending the library involves extending the property

For all template T, list of variables X,

and list of substitutions X’, apply(T, X) yields

T with X values switched to those of X’

and all escaped at symbols

turned into at symbols

The new property doesn’t allow the bug
slip through like in the previous story

Template: "@ @@ @"

Substs : [{" ", ""}]

Expected: ""

Got: {error, {variable_not_found," @ "}}

ProTest researchers explored different practical
ways of achieving this type of testing

With QuickCheck we define data generators so that the
computer can randomly look for a counterexample

?FORALL(T,template(),

 template:apply(

 to_string(T), to_subs(T))

 == to_result(T)).

The trick in this case is that we derive inputs and
outputs from the same abstract representation

You know testing is a powerful tool, what you
want to know is how to test more effectively

You need to understand what are the advantages
of property based testing to apply it effectively

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

