
IPv6 programming
for Erlang/OTP

Kenji Rikitake
ACCMS/IIMC, Kyoto University

30-MAR-2012

Twitter: @kenji_rikitake

kenji.rikitake@acm.org

Kenji Rikitake / Erlang Factory SF Bay 2012 1

Contents

Trying IPv6 on Erlang/OTP is EASY

(Very brief) introduction to IPv6

Erlang handling of IPv6 addresses

Erlang/OTP TCP/IP architecture

IPv6 application examples

IPv6 programming pitfalls

Bugs and issues on R15B

Kenji Rikitake / Erlang Factory SF Bay 2012 2

Trying IPv6 on Erlang is EASY

R15B can handle IPv6 services

 Address format is the (only) major difference

It's ready on major operating systems

 Linux, FreeBSD, Windows 7, etc.

Try free tunneling services for testing

 Enabling IPv6 connectivity over IPv4

 Hurricane Electric's Tunnel Broker

http://www.tunnelbroker.net/

Kenji Rikitake / Erlang Factory SF Bay 2012 3

http://www.tunnelbroker.net/
http://www.tunnelbroker.net/
http://www.tunnelbroker.net/
http://www.tunnelbroker.net/

What is IPv6?

Internet Protocol version 6
 IETF recommendation: July 1994 as "IPng"

 Code base stabilized by 2006 (KAME Project)

Address space: core difference from IPv4
 IPv4: 32 bits -> IPv6: 128 bits

 IPv4 address blocks have been used up
 IANA pool exhausted on 3-FEB-2011

Large-scale apps should migrate to IPv6
 New users may only be able to use IPv6

Kenji Rikitake / Erlang Factory SF Bay 2012 4

How IPv6 works (1)

Unicast address assignment in bits

 Network part: 64, Host part: 64
 Address aggregation occurs to consolidate the routes

 Global ID (48) + Subnet (16) + Host (64)

Host ID: automatically generated or managed

 Stateless autoconfiguration for each interface
Host IDs derived from the hardware address

Required for boot time neighbor discovery

 Stateful configuration, through DHCPv6

 Host ID can be randomized to enhance privacy

Kenji Rikitake / Erlang Factory SF Bay 2012 5

How IPv6 works(2)

Addresses: eight 16-bit hex numbers
2001:db8:cafe:babe:face:b00c:1234:5678

Netmasks: usually /64, variable (as CIDR)
Consecutive zeros abbreviated as "::"
 2001:db8:cafe:babe::/64 <- network
 ::1 = 0:0:0:0:0:0:0:1 ("localhost")
 2001:db8::1 = 2001:db8:0:0:0:0:0:1

On URL: use brackets (RFC5952, RFC3986)
 http://[2001:db8:2::50]:80/index.html

Reverse-lookup zone format: split by hex digits
 e.b.a.b.e.f.a.c.8.b.d.0.1.0.0.2.ip6.arpa
See my v6hex module for handling the hex digits

Kenji Rikitake / Erlang Factory SF Bay 2012 6

What is IPv6? (3)

Extensive use of multicasting

Multicast addresses (ff00::/8) have scopes

 interface/machine-local (e.g., ff01::1)

 link/subnet-local (e.g., ff02::1)

Equivalent to link-level broadcast

Neighbor Discovery Protocol (NDP)

 Solicitation/advertisement of routers/hosts

Equivalent to ethernet ARP, a part of ICMPv6

Kenji Rikitake / Erlang Factory SF Bay 2012 7

What is IPv6? (4)

Routers no longer make packet fragments

Host-to-host path MTU discovery needed

Finding out the maximum length of IP packet which
will be transferred without fragmentation

Packets exceeding MTU will be discarded

ICMPv6: Packet Too Big message

Minimum MTU: 1280 bytes

Exchanging large UDP packets will be affected

OS protocol stacks will negotiate the MTU, but end-
point programs may also need to be aware of Path MTU

Kenji Rikitake / Erlang Factory SF Bay 2012 8

IPv4-mapped IPv6 addresses

Showing IPv4 nodes in IPv6 addresses
 Uses address space of ::ffff:0:0/96
 IPv4: 192.168.0.1 = IPv6 ::ffff:192.168.0.1

That's ::ffff:c0a8:1 (in pure hex notation)
See RFC4291 Section 2.5.5.2

Interpretation is solely OS-dependent
 IPv4-mapped address used in the source part means
the connection comes from an IPv4 node
 Some OS disables this by default

Allowing pure IPv6 connection only for IPv6 sockets
FreeBSD: net.inet6.ip6.v6only = 1 (disabled)
See RFC3493 Section 5.3

Kenji Rikitake / Erlang Factory SF Bay 2012 9

Erlang/OTP IPv6 address format

8-element tuple of 16-bit unsigned integers

From R15B lib/kernel/src/inet.erl:
-type ip4_address() ::
{0..255,0..255,0..255,0..255}.

-type ip6_address() ::
{0..65535,0..65535,0..65535,0..65535,
 0..65535,0..65535,0..65535,0..65535}.

-type address_family() :: 'inet' | 'inet6'.

inet_parse:address(

 "2001:db8:cafe:babe:face:b00c:1234:5678").

› {ok,{8193,3512,51966,47806,64206,45068,4660,
22136}}

Kenji Rikitake / Erlang Factory SF Bay 2012 10

Tip: Erlang can handle hex numbers

Adding 16# prefix to hex numbers will ease
coding IPv6 address with Erlang tuples

6> {ok, A1} =
inet_parse:address("2001:db8:cafe:babe::1").

{ok,{8193,3512,51966,47806,0,0,0,1}}

8> A2 = {16#2001, 16#db8, 16#cafe, 16#babe,
16#0, 16#0, 16#0, 16#1}.

{8193,3512,51966,47806,0,0,0,1}

9> A1 =:= A2.

true

(Thanks to Fred Hébert for telling me about this idea!)

Kenji Rikitake / Erlang Factory SF Bay 2012 11

Erlang/OTP TCP/IP architecture
User application

modules and programs

Written
in

Erlang

kernel gen_tcp, gen_udp, gen_sctp modules
(TCP/UDP/SCTP socket interfaces)

kernel inet_*, inet6_* modules
(lower-level access to TCP/IP functions)

erts/preloaded/src/prim_inet.erl
(interface to the linked-in drivers)

erts/emulator/drivers/common/inet_drv.c
(tcp_inet/udp_inet/sctp_inet linked-in drivers)

Linked-in
drivers

(C code)

OS protocol stack
(system calls, socket-related libraries)

OS kernel
and

libraries

Kenji Rikitake / Erlang Factory SF Bay 2012 12

TCP/UDP/SCTP code needs little mods

Erlang/OTP network code is highly abstract

OTP library firmly distinguishes between IPv4
and IPv6 address families

e.g., kernel/src/inet_tcp.erl .vs. inet6_tcp.erl

 inet or inet6 address family info required

 connect/{3,4} and listen/2 functions accept the
inet6 option in gen_tcp and ssl modules

And that's (almost) all you need to do

 Note: the address family option must match
with the IP address passed on to the function

Kenji Rikitake / Erlang Factory SF Bay 2012 13

How to determine if IPv6 is supported

Deciding by "localhost" is resolvable to "::1"

inet:getaddr/2 looks up the DNS and returns
the address of specified family (inet/inet6)

% from MochiWeb mochiweb_socket_server module

ipv6_supported() ->

 case (

 catch inet:getaddr("localhost", inet6)) of

 {ok, _Addr} -> true;

 {error, _} -> false

 end.

Kenji Rikitake / Erlang Factory SF Bay 2012 14

gen_tcp:connect/3 Address parameter

You only have to pass on the address tuple

If Address is a hostname:

 tcp module name in ERL_INETRC is effective
To change this for IPv6, add the following line:

{tcp, inet6_tcp}. % default: inet_tcp

% Don't forget the ending period

If Address is a tuple:

 Choose the family by BIF tuple_size(Address)
4 -> IPv4 (inet_tcp), 8 -> IPv6 (inet6_tcp)

Same behavior on gen_udp and gen_sctp

Kenji Rikitake / Erlang Factory SF Bay 2012 15

More OTP IPv6-compatible functions

inet_parse:address/1 (address string -> tuple)

inet_parse:ntoa/1 (tuple -> address string)

inet:getaddrs/2 (2nd arg: address family)

inet:gethostbyaddr/1 (tuple -> hostent)

inet_res:gethostbyaddr/1 (DNS backend)

inet_res:gethostbyname/1 (DNS backend)
inet_res resolvers will try to return IPv6 address first
when the following line is set in ERL_INETRC (and IPv4-
mapped IPv6 address for IPv4 addresses):

{inet6, true}. % default: false

% Don't forget to include the period!

Kenji Rikitake / Erlang Factory SF Bay 2012 16

IPv6 support on Erlang programs

"grep inet6" helps to look up the source code

TCP-based Web servers are OK

 Mochiweb, Yaws (including SSL/TLS)

TCP/UDP network programs are also OK

 Tsung, ejabberd

Rewriting needed for those handle ICMPv6

 Procket (socket tweaking tool)

ICMPv6 (protocol 58) =/= ICMPv4 (protocol 1)

See my (experimental) example fork on GitHub

Kenji Rikitake / Erlang Factory SF Bay 2012 17

How to choose IPv4 or IPv6

Web/TCP servers: use multiple instances
 Use at least one for each protocol

DNS: preference strategy required
 RFC3484 recommends IPv6 first, then IPv4

 Reality: very few sites support IPv6 yet

 A simple workaround example
Look up AAAA RR first with timeout (~200ms)

If found, then use the IPv6 address for access

If not found, look up A RR (falling back to IPv4)

Example code in my v6hex:v64adrs/{1,2}

Kenji Rikitake / Erlang Factory SF Bay 2012 18

Bugs and issues on R15B

Distributed Erlang on IPv6 doesn't work
 -proto_dist inet6_tcp

 epmd doesn't listen on the IPv6 port

 Patch exists but not accepted by OTP team

 Multiple daemons for multiple transports?

Interface identifiers (IIDs) not supported
 Interface name after '%' e.g., ff02::1%em0

 Required for link-scoped multicast addresses

ICMP and raw sockets (aka black magic)

Kenji Rikitake / Erlang Factory SF Bay 2012 19

Acknowledgments to:

People helping the code development

Francesco Cesarini

Who suggested me to give this talk

Michael Santos (the author of procket)

Frédéric Trottier-Hébert (for 16# prefix)

and all the participants of EF SF Bay 2012!

Kenji Rikitake / Erlang Factory SF Bay 2012 20

References (1)

• v6hex: https://github.com/jj1bdx/v6hex

• Mochiweb: https://github.com/mochi/mochiweb

• Procket: https://github.com/msantos/procket

• mine with ICMPv6: https://github.com/jj1bdx/procket

• Erlang/OTP documentation

• Inet configuration, ERTS User's Guide

• inet module, kernel reference manual

• Erlang/OTP source code

lib/kernel/src/inet*.erl

(Read the files many times to understand the details)

Kenji Rikitake / Erlang Factory SF Bay 2012 21

https://github.com/jj1bdx/v6hex
https://github.com/mochi/mochiweb
https://github.com/mochi/mochiweb
https://github.com/mochi/mochiweb
https://github.com/msantos/procket
https://github.com/msantos/procket
https://github.com/jj1bdx/procket
https://github.com/jj1bdx/procket
https://github.com/jj1bdx/procket

References (2)

• Kevin R. Fall, and W. Richard Stevens, TCP/IP
Illustrated, Volume 1, Second Edition: The
Protocols, Addison-Wesley, 2012, ISBN
9780321336316 (including full IPv6 explanation)

• W. Richard Stevens, Bill Fenner, and Andrew M.
Rudoff, UNIX Network Programming, Volume 1,
Third Edition: The Sockets Networking API,
Addison-Wesley, 2004, ISBN 9780131411555
(describing basic coding techniques)

• Dan York, Migrating Applications to IPv6, O'Reilly,
2011, ISBN 9781449307875 (recommended as in
introductory reading)

Kenji Rikitake / Erlang Factory SF Bay 2012 22

https://github.com/jj1bdx/sfmt-erlang/

