
Building Data-parallel Pipelines
in Erlang

Pero Subasic
Erlang Factory, San Francisco

March 29, 2012

Outline
- An introduction to data-parallel
- Requirements
- Map-reduce Flows Recap
- Architecture Overview
- Flow Specification Language
- Iterative Flows - Concept Rank Flow
- Results
- Conclusion and Future

2

Requirements

3

Computation models
 - map-reduce
 - iterative and incremental
Processing models
 - in stream, stateful
 - in stream, stateless
 - batch
Computation platform
 - Cloud
 - Virtualized, general
 - Bare metal

Data Parallel Trend

Scientific Computing Tools
 - R -> snow, multicore, parallel, RHIPE, R+Hadoop, etc.
 - Mathematica -> gridMathematica
 - MatLab -> Parallel Toolbox

Internet, Big Data
 - Yahoo: S4
 - Google: FlumeJava
 - Cloudera: Crunch, Hadoop MR2

Parallelism granularity
 - GPGPU
 - Multi-CPU/Multicore
 - Cluster

4

The concept is not really new. It is easy to find online a paper “Data Parallel Algorithms” by W. Daniel Hillis and Guy L.
Steele, Jr. from December 1986 issue of Communications of ACM where they talk about data parallel algorithms where “their
parallelism comes from simultaneous operations across large sets of data rather than from multiple threads of control.” Here it
applies mostly to machines with hundreds or thousands of processors.

Erlang has data parallelism.
Since functions are first-class objects, they can be dispatched wherever we want them in the distributed system, on-demand,

and with the data thereby enabling the concept of bringing computation to the data.

Data Parallel
Given an integer vector x

5

x : x[i],i = 1,n

|| f x()
apply a function to vector elements in parallel

Map Reduce*3 Flow

Sc
an

ne
r

U
P

Ag
gr

eg
at

or

Ev
en

ts

U
se

r P
ro

fil
es

3 80 120

Sc
an

ne
r

Ca
m

pa
ig

n
Co

m
pu

te

Ag
gr

eg
at

or

120 120

Ca
m

pa
ig

n
Co

un
ts

 (L
)

Sc
an

ne
r

Ag
gr

eg
at

or

Ca
m

pa
ig

n
Co

un
ts

 (G
)

Input Layer

An Example Flow

3

Event Source A

Event Source B

Event Source C

Scanner A

Scanner B

Scanner C

ETS

DETS

DETS

Processing Layer

Processor 1

Processor 2

Processor n

...

Aggregation Layer

Aggregator 1

Aggregator 2

Aggregator n

... Sink
(Mnesia)

Consumers

Architecture

8

Architecture
• Flow supervisor/monitor – layer – worker

hierarchy
• ETS/DETS/Mnesia/TCP/UDP tables for

sources, sinks and intermediaries
• Synchronous or asynchronous message

passing between layers
• Plugins
• Example layer parameters:

– Layer size
– Layer identification
– Layer input, output data/format and connectivity

with adjacent layers
– Mapping functions between layers: partitioning

Layer
• Process
• Spawns and monitors

workers
• Elastic (number of

workers)
• Workers perform

uniform functions
• Connects to other

layers, sources, sinks,
intermediaries,
resources

• Maps to physical
nodes

Layer

Worker

Worker

Worker

N

Sources, Sinks and Intermediaries

• Storage for crucial data
sets

• Staging used for input
for one or more flows

• Intermediary: output
from previous layer,
input to the next one;
implementing barrier
concept

• Both can be used for
staging input for
multiple downstream
layers/flows

Source

ETS

ETS

ETS

Interme
diary

ETS

ETS

ETS

Workers
• Input layer: predefined

for ETS scan
• UDF assumes

intermediary/staging
table record format

• UDF defined externally,
still Erlang

• Partitioning/load
balancing function:
predefined or custom

• Output to intermediary
or another layer

• All functionality local to
a node

Worker

UDFInput
Partitio
ning/

Output

Flow Language

13

Flow Language: Configuration Hierarchy
Infrastructure

Cloud/VM
Hardware

Platform/Framework
Erlang node configuration
Code repository: framework, plugins, global libraries (Erlang, C/C++, CUDA)

Applications
application libraries
flow

flow infrastructure (TCP, UDP, ETS, DETS, Mnesia)

flow structure: flow graph (nodes, communication)

flow replication
optimization

monitoring

scheduling

14

Infrastructure
Platform

Application

Flow Language

15

% cluster hardware specs

{hardware, [

 !! {physical_nodes, [

! ! ! ! {cache01, [{memory, 128G}, {cores, 16}, {disk, 1T}]},

 {cache02, [{memory, 128G}, {cores, 16}, {disk, 1T}]},

 ...

 {cache08, [{memory, 128G}, {cores, 16}, {disk, 1T}]}

]

! ! }]

}

% Erlang node specs

{nodes, [! ! {pero@cache01, [{pa, “/nas1/dpar/data”},

 {config, “/nas1/dpar/apps/conf/flow1.cfg”},...]

 },

 {pero@cache02, [{pa, “/nas1/dpar/data”},

 {config, “/nas1/dpar/apps/conf/flow1.cfg”},...},

 ...

 {pero@cache08, [{pa, “/nas1/dpar/data”},

 {config, “/nas1/dpar/apps/conf/flow1.cfg”},...}

]

}

% data sources and sinks

 {source, [{type, ETS}, {name, adcom_events}, {size, 12}]},

 {source, [{type, DETS}, {name, adtech_events}, {size, 12}]},

 {source, [{type, DETS}, {name, tacoda_events}, {size, 12}]},

 {sink, [{type, Mnesia}, {name, user_profiles}]},

% processing graph, layers, workers

 {layers, [scanner, processor, aggregator]},

 {layer, adcom_scanner, [

 ! {type, scanner},
 ! {predecessor, adcom_events}, % source specs for the scanner
! {operation_mode, sequential_parallel_scan}, % scan records in order, in

parallel fashion across tables

! {successor, [processor]},

! {partition, {partitioner, partitioning_fun, [adcom]}}, % user-defined

partitioning function acting on adcom event records

! {communication, {concurrent, asynchronous}}

!]},

 {layer, adtech_scanner, [

 ! {type, scanner},
 ! {predecessor, adtech_events}, % source specs for the scanner
! {operation_mode, sequential_parallel_scan}, % scan records in order, in

parallel fashion across tables

! {successors, [processor]},

! {partition, {partitioner, partitioning_fun, [adtech]}}, % user-defined

partitioning function acting on adcom event records

! {communication, {concurrent, asynchronous}}

!]},...

]},

% processing graph, layers, workers

{layer, processor, [

! ! {type, worker},

! ! {predecessors, [adcom_scanner, adtech_scanner, tacoda_scanner]},

! ! {successors, [aggregator]},

! ! {function, {worker, worker_fun, []}}, % say extracts relevant info from the

event record and passes on with key equal to TID or ACID

! ! {communication, {concurrent, asynchronous}},

! ! {distribution, local},

! ! {size, 36} % 36 workers per layer per node

! !]

! }

! {layer, aggregator, [

! ! {type, worker},

! ! {predecessors, [processor]},

! ! {successors, [user_profiles]},

! ! {function, {aggregator, aggregator_fun, []}}, % aggregates all fields with a

common ACID/TID into the same entry in Mnesia table

! ! {communication, {concurrent, asynchronous}},

! ! {distribution, local},

! ! {size, 36} % 36 workers per node

!]

}

Iterative Flow - Concept Rank

16

Wikipedia Concept Rank Problem Space
3,091,923 concepts
42,205,936 links

17

PR(pi) =
1− d
N

+ d
PR(pj)
L(pj)pj∈M (pi)

∑

Concept Rank Results

18

1

10

100

1000

Erlang Python Scala Java C LISP Haskell C# Pascal FORTRAN Ada

22
42

2127
1417

139133

3

75

4

Concept Rank of Programming Languages on Wikipedia

Programming Languages

CR Flow

19

CR Compute Worker

20

CR WorkerToken

Mnesia

CR6

CR7

read

write

if phash2(CID) == token
 compute_cr(CID)

bMap ETS fMap ETS

backlinks(CID)

foreach concept B in backlinks(CID)
 FL = length(forwlinks(B))
 compute sum(CR(B))/FL

1

2

3

4

Computation Metrics and Results
- memory use: 420m RAM, 63m resident memory

- Mnesia is distributed across nodes.

- fMap and bMap are loaded on each node in ETS tables

- fMap 126M, 3,091,923 records

- bMap 121M, 2,479,969 records

- conceptrankX tables in Mnesia -> 3,091,923 records, 31,374,390 words of memory each

Runtimes, 10 iterations:

* 1 worker process, 1 node: 50 minutes (time for 10 iterations)

* 10, 1: 18.36 min

* 20, 1: 23.48 min

* 5, 1: 19.8 min

* 2 nodes, 10 proc/node: 14.83 min

* 3 nodes, 10 proc/node: 11.16 min low network traffic 10MB/sec; nice low traffic and fast response with not
so high CPU usage

* 4 nodes, 10 proc/node: 11.83 min med-high to high 30MB/sec

* 4 nodes, 15 proc/node: 12.67 min med-high network traffic 25MB/sec

* 4 nodes, 5 proc/node: 8.83 min high network traffic 35MB/sec *

* 4 nodes, 2 proc/node: 22.3 min medium network traffic 15MB/sec across all four nodes * 21

- finding compromise point between network traffic due to Mnesia table sync and local computation

requirements on each node - seems like 5 proc/node minimizes response time at the expense of

high network traffic. Reducing number of processes per node to 2 reduces network traffic, but

impacts computing capacity (CPU utilization is lowest of all aproaches). So, in that case,

system spends most time computing the ranks.

Concept Rank Flow: Tradeoffs

22

3,10 4,10 4,15
4,5

4,2

0
7.5

15.0
22.5
30.0

(3,10) (4,10) (4,15) (4,5) (4,2)

22.30

8.83
12.6711.8311.16

CR Flow Run times

Configuration (Nodes, Processes per node)

Optimization

Minimize
run time
network traffic
cpu utilization
disk i/o
cloud expense
some combination of the above

23

Flow MonitorSet Flow
Parameters

status

Monitor DBOptimizer

Run Time Local Minima

24

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

114

172

98
1131111069410693958186938068

50

130

62

122130

Swipe 1,20,1 4 nodes

Swipe Results

25

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

94

147

99

162

92
67615966545249

99

434838

88

42

8680

Swipe, 1,20,1 8 nodes

Processes per node

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

114

172

98
1131111069410693958186938068

50

130

62

122130

Swipe 1,20,1 4 nodes

Time in secs Poly, order 4

Swipe Ganglia Monitoring

26

Conclusion and Future
- Erlang is very convenient and appropriate

language and platform for data-parallel
flows

- Building languages and platforms makes
sense to facilitate easy flow specification

- Small Erlang team can do wonders

27

Questions, Comments?

28

