
Joseph Blomstedt (@jtuple)
Basho Technologies

joe@basho.com

Test-First Construction of
Distributed Systems

Erlang Factory SF
March 2012

Thursday, March 29, 2012

mailto:joe@basho.com
mailto:joe@basho.com

2

a distributed, scalable, and highly-
available datastore store.

Basho makes

Thursday, March 29, 2012

3

Basho is a start-up

Thursday, March 29, 2012

4

Ship Quickly Ship Correctly

Highly Available
Fault Tolerant

Enterprise

Start-up
Iterate
Agility

Thursday, March 29, 2012

5

Ship Quickly Ship Correctly

Highly Available
Fault Tolerant

Enterprise

Start-up
Iterate
Agility

Strive to reduce gap

Thursday, March 29, 2012

Erlang Is Indispensable

6

• Built-in concurrency and distributed
programming

• Fault-tolerant just-crash / supervisor mentality

• Ability to inspect VM state

• Hot load code loading

Thursday, March 29, 2012

7

Result?

Thursday, March 29, 2012

8

Majority of bugs are concurrent logic errors

Thursday, March 29, 2012

Testing Tools

9

• Quickcheck
Property-based testing

• Pulse
Randomizing Erlang scheduler

• McErlang / Concuerror
Model checkers

Thursday, March 29, 2012

Quickcheck

10

my_test() ->
 eqc:quickcheck(reverse_prop()).

reverse_prop() ->
 ?FORALL(L,
 list(int()),
 begin
 lists:reverse(lists:reverse(L)) == L
 end)

Thursday, March 29, 2012

Quickcheck eqc_statem

11

Run against stateful code

Verify postconditions

Generate Command Sequence

Thursday, March 29, 2012

Quickcheck eqc_statem

12

command(State) ->
 %% Commands to run against stateful system
 oneof(Cmds).

precondition(State, Cmd) ->
 %% Return true if cmd is valid in current state.

next_state(State, Result, Cmd) ->
 %% Update test state after a given cmd.

postcondition(State, Cmd, Result) ->
 %% Test postconditions.

Thursday, March 29, 2012

Testing Issues

• Building test from implementation often not
straightforward

• Testing concurrent interleaving requires a
different approach

• Building a great implementation of a broken
algorithm is disheartening

13

Thursday, March 29, 2012

14

Test First Construction

Thursday, March 29, 2012

15

Build testable model

Thursday, March 29, 2012

16

Test
Iterate

Gain Confidence

Thursday, March 29, 2012

17

Convert model into implementation

Thursday, March 29, 2012

18

Verify implementation against model

Thursday, March 29, 2012

History

19

• First built testable model for new clustering
subsystem for Riak 1.0

• Model built on top of eqc_statem

• The test itself was the model of the system and
tested properties against itself

• Somewhat ad-hoc, but it worked

Thursday, March 29, 2012

eqc_system (1/2)

20

• Refactored the approach into general-purpose
framework based on lessons learned

• Events
External events, timers, things you do not care to model

• Calls/Casts
Similar to OTP gen_server

• Calls/casts map to simulated receive/reply
semantics

Thursday, March 29, 2012

eqc_system (2/2)

21

• Test consists of test module and a set of node
modules

• Callbacks
handle_event, handle_call, handle_cast
after_event, after_call, after_cast
post_event, post_call, post_cast, always

• Test module can generate events and test
properties against global test state

• Node modules generate events, calls, casts and test
local properties

Thursday, March 29, 2012

Simple Example

• Nodes join together an form a cluster

• Nodes periodically gossip membership state to
other known nodes

22

Thursday, March 29, 2012

23

events(#state{nodes=Nodes}) ->
 ?EVENT(join, [elements(Nodes), elements(Nodes)]).

precondition(_, S, join, [Node,[OtherNode]]) ->
 Singleton = S#state.singleton,
 all([Node /= OtherNode,
 lists:member(Node, Singleton),
 (Singleton == S#state.nodes) or
 lists:member(OtherNode, Singleton)]);

after_event(_Nodes, S, {join, [OtherNode]}, Node, _NodeState) ->
 Singleton = S#state.singleton -- [Node, OtherNode],
 S#state{singleton=Singleton};

Test Module

Thursday, March 29, 2012

24

events(Node, #state{members=Members}) ->
 ?EVENT(gossip, [Node, [elements(Members)]]).

precondition(S, gossip, [Node, [OtherNode]]) ->
 all([lists:member(OtherNode, S#state.members),
 Node /= OtherNode]);

Test Node Module (1/3)

Thursday, March 29, 2012

25

handle_event({join, [OtherNode]}, State) ->
 call(State, OtherNode, get_members,
 fun(Members) ->
 Members2 =
 lists:sort([State#state.id | Members]),
 State2 = State#state{members=Members2},
 {noreply, State2}
 end);

handle_event({gossip, [OtherNode]}, State) ->
 cast(OtherNode, {gossip, State#state.members}),
 {ok, State}.

Test Node Module (2/3)

Thursday, March 29, 2012

26

handle_call(get_members, _From, State) ->
 {reply, State#state.members, State}.

handle_cast({gossip, OtherMembers}, State) ->
 Members2 = merge(Members, OtherMembers),
 {noreply, State#state{members=Members2}}.

Test Node Module (3/3)

Thursday, March 29, 2012

27

[{init,{sys_state,undefined,undefined,rc,0,[],undefined,undefined,
 model}},
 {set,{var,1},{call,eqc_sys,init_dynamic,[]}},
 {set,{var,2},{call,eqc_sys,init_system,[rc]}},
 {set,{var,3},{call,rc,join,[3,[1]]}},
 {set,{var,4},{call,eqc_sys,rcvmsg,[1,{3,{call,get_members}}]}},
 {set,{var,5},{call,rc,join,[2,[1]]}},
 {set,{var,6},{call,eqc_sys,rcvreply,[3,{1,[1]}]}},
 {set,{var,7},{call,eqc_sys,rcvmsg,[1,{2,{call,get_members}}]}},
 {set,{var,8},{call,eqc_sys,rcvreply,[2,{1,[1]}]}},
 {set,{var,9},{call,rc_node,send_gossip,[3,[1]]}},
 {set,{var,10},{call,rc_node,send_gossip,[3,[1]]}},
 {set,{var,11},{call,rc_node,send_gossip,[2,[1]]}},
 {set,{var,12},{call,rc_node,send_gossip,[3,[1]]}},
 {set,{var,13},{call,eqc_sys,rcvmsg,[1,{3,{cast,{gossip,
[1,3]}}}]}},
 {set,{var,14},{call,eqc_sys,rcvmsg,[1,{3,{cast,{gossip,
[1,3]}}}]}}]

Example Command Sequence

Thursday, March 29, 2012

Extended Example

• Cluster maintains a weak leader
Lowest node id in the cluster is considered the leader
No actual leader election or failure detection

• Property we care about
At all times, there is only one node that believe it is the
leader of a cluster

28

Thursday, March 29, 2012

29

-record(state, {id, members, leader}).

handle_event({join, [OtherNode]}, _Node, State) ->
 call(State, OtherNode, get_state,
 fun(#state{members=Members, leader=Leader}) ->
 Members2 =
 lists:sort([State#state.id | Members]),
 {noreply, State#state{members=Members2,
 leader=Leader}}
 end);

handle_event({send_gossip, [OtherNode]}, _Node, State) ->
 cast(OtherNode, {gossip, State}),
 {ok, State};

Extended Node Module (1/3)

Thursday, March 29, 2012

30

handle_call(get_state, _From, _Node, State) ->
 {{reply, State}, State};

handle_cast({gossip,
 #state{members=Members, leader=Leader}},
 _From, _Node, State) ->
 Members2 = lists:usort(State#state.members ++ Members),
 case State#state.id == State#state.leader of
 true ->
 Leader2 = hd(lists:sort(Members2));
 false ->
 Leader2 = Leader
 end,
 {noreply, State#state{members=Members2, leader=Leader2}};

Extended Node Module (2/3)

Thursday, March 29, 2012

31

get_leader(S) ->
 S#state.leader.

get_members(S) ->
 S#state.members.

Extended Node Module (3/3)

Thursday, March 29, 2012

32

always(Nodes, S) ->
 all([begin
 Members = nodecall(Nodes, Node, get_members, []),
 one_leader(Nodes, Members)
 end || Node <- S#state.nodes]).

one_leader(Nodes, Members) ->
 Leaders = [Leader || Node <- Members,
 Leader <- [nodecall(Nodes, Node,
 get_leader, [])],
 Leader == Node],
 length(lists:usort(Leaders)) < 2.

Extended Test Module

Thursday, March 29, 2012

33

[{init,{sys_state,undefined,undefined,rc,0,[],undefined,undefined,model}},
 {set,{var,1},{call,eqc_sys,init_dynamic,[]}},
 {set,{var,2},{call,eqc_sys,init_system,[rc]}},
 {set,{var,3},{call,rc,join,[1,[3]]}},
 {set,{var,4},{call,eqc_sys,rcvmsg,[3,{1,{call,get_state}}]}},
 {set,{var,5},{call,eqc_sys,rcvreply,[1,{3,{state,3,[3],3}}]}},
 {set,{var,6},{call,rc_node,send_gossip,[1,[3]]}},
 {set,{var,7},{call,eqc_sys,rcvmsg,[3,{1,{cast,{gossip,{state,1,[1,3],3}}}}]}},
 {set,{var,8},{call,rc_node,send_gossip,[3,[1]]}},
 {set,{var,9},{call,rc_node,send_gossip,[1,[3]]}},
 {set,{var,16},
 {call,eqc_sys,rcvmsg,[3,{1,{cast,{gossip,{state,1,[1,3],3}}}}]}},
 {set,{var,18},
 {call,eqc_sys,rcvmsg,[1,{3,{cast,{gossip,{state,3,[1,3],1}}}}]}}]
{postcondition,false}

Counterexample

Thursday, March 29, 2012

Versioned leader state

34

• Add version number to gossiped state

• Leader increments version when changed

• Node updates leader only if newer version

• After changes, model passes without issue

Thursday, March 29, 2012

35

Convert to Implementation

Thursday, March 29, 2012

Convert to Implementation

36

• Convert model into actual implementation

• Majority of code reused
eqc_sys designed to mirror OTP code

• Update model if as necessary and reiterate

Thursday, March 29, 2012

37

Test Implementation

Thursday, March 29, 2012

Recall model design

38

• Events
Commands that trigger system transitions

• Calls/casts
Emulated as commands in order for testing purposes

Thursday, March 29, 2012

Testing Approach #1

• Quickcheck generates event sequences, not
call/casts

• Events mapped to equivalent implementation
constructs

• Erlang tracing used to capture actual call/casts
that occurred

• Verify events + observed call/casts against
model and final cluster state

39

Thursday, March 29, 2012

Testing Approach #2

• Modify implementation to enable controlling
message interleaving

• Implemented as a proxy process that delays
forwarding messages until told to do so by test
module

• Investigating parse_transform option

40

Thursday, March 29, 2012

Interacting with other tools

• Pulse, McErlang, Concuerror
All aimed at concurrency debugging

• Testing approach #1 works well with these
tools
Generate event sequences + trace, but allow
scheduling tools to force interleavings

• Tested with Pulse and Concuerror

• Even more confidence in model/code

41

Thursday, March 29, 2012

Limitations

• eqc_sys
entirely random, may not hit lurking bad interleaving

• Pulse
also random

• McErlang / Concuerror
state space usually too large

42

Thursday, March 29, 2012

Coq Proof Assistant

• Working on using Coq to prove model

• Coq script similar to Quickcheck model
Represent commands as a list constructed from a
generate
Model are functions that operate over list, producing
state
Properties checked against state
Prove: Forall commands, properties always hold.

43

Thursday, March 29, 2012

Coq Challenges (1/2)

• Writing Coq scripts
Syntax (Basho is an Erlang company)
Semantics (Mapping Erlang ideas to Coq)

• Working on Erlang to Coq generate that
works on subset of Erlang used in my models
Solves syntax issues
Semantics are tricker, but approached as encountered

44

Thursday, March 29, 2012

Coq Challenges (2/2)

• Proving in Coq is not automatic

• Tedious process, not Basho specialty

• Working on domain-specific proof tactic and
library of lemmas to enable automated

• Inspired by Professor Chlipala’s book
http://adam.chlipala.net/cpdt

• Possibly hear more later this year
Personal project, so progress is slow

45

Thursday, March 29, 2012

http://adam.chlipala.net/cpdt
http://adam.chlipala.net/cpdt

46

Test

Implement

Model

Verify

Thursday, March 29, 2012

47

Ship Quickly Ship Correctly

Getting a little closer

Thursday, March 29, 2012

Questions?

joe@basho.com
@jtuple

Thursday, March 29, 2012

mailto:joe@basho.com
mailto:joe@basho.com

