fle I First C onstrlietien e
Distributed Systems

Erlang Factory Sk
Melacly 201 2

Joseph Blomstedt (@jtuple)
Basho Technologies
Joe@basho.com

& sriak

basho

Thursday, March 29, 2012

mailto:joe@basho.com
mailto:joe@basho.com

basho

a distribus

B3asno makes

riak

'ed, scalable, and highly-

avalla

ol @RiESIorE Siore,

sriak

©

basho

3asho IS a start-up

AN [o

K

Thursday, March 29, 2012

ShiD Quickly == 5hip COFfeT.

Start-up
terate
Agllity

©

basho

High
Fau

y Avallab

t Toleranit

Enterprise

c

sriak

Thursday, March 29, 2012

B Ouickly == S5hip COFEt.

1

Start-u | |
g iflve (O edlice adm Slighly F .

terate Fault Tolerant
Agllity * Enterprise
—=
[5
© 5 sriak

basho

Thursday, March 29, 2012

—rlang Is Indispensable

e Built-in concurrency and distributed
programming

* Fault-tolerant just-crash / supervisor mentality

e Ability to inspect VM state

* Hot load code loading

© 6 sriak

basho

Thursday, March 29, 2012

©

basho

Result?

AN [o

K

Thursday, March 29, 2012

Majority of bugs are concurrent logic errors

b@;, : Nria

K

Thursday, March 29, 2012

lesting lools

e Quickcheck
Property-based testing

& Puilse

Randomizing Erlang scheduler

& icErang / Concuerror
Mleaeicheckers

bg,; 9 sriak

Thursday, March 29, 2012

©

basho

Quickcheck

my_test() ->
eqc:quickcheck(reverse_prop()).

reverse_prop() ->
?FORALL(L,
list(int()),
begin
lists:reverse(lists:reverse(L)) ==
end)

AN | [o

K

Thursday, March 29, 2012

Quickcheck eqgc_statem

‘ Generate Command Sequence l

‘ Run against stateful code l

‘ Verify postconditions l

©

basho

AN | [o

K

Thursday, March 29, 2012

Quickcheck eqgc_statem

command(State) ->
%% Commands to run against stateful system
oneof(Cmds).

precondition(State, Cmd) ->
%% Return true i1f cmd i1is valid i1n current state.

next_state(State, Result, Cmd) ->
%% Update test state after a given cmd.

postcondition(State, Cmd, Result) ->
%% Test postconditions.

O 2 Friak

basho

Thursday, March 29, 2012

lesting Issues

e Building test from implementation often not
straightforward

e [esting concurrent interleaving requires a
different approach

e Bullding a great iImplementation of a broken
algorithm Is disheartening

& 3 sriak

basho

Thursday, March 29, 2012

©

basho

Test First Construction

AN [o

K

Thursday, March 29, 2012

©

basho

Bulld testable model

AN [o

K

Thursday, March 29, 2012

©

basho

Jest

'tera

e

Gain Con

dence

AN [o

K

Thursday, March 29, 2012

Convert model into implementation

bgo I/ ? ria

K

Thursday, March 29, 2012

Verity implementation against model

bgo 18 ? ri a

K

Thursday, March 29, 2012

History

* First bullt testable model for new clustering
subsystem for Riak |.0

e Model bullt on top of eqc_statem

he test Itsel

- was the model of the system

tested prope

rties against Itself

e Somewhat ad-hoc, but 1t worked

©

basho

and

sriak

Thursday, March 29, 2012

e System (1/2)

e Refactored the approach into general-purpose
framework based on lessons learned

e Fvents

—xternal events, timers, things you do not care to model

PR alls/ Casts

Siilliia eI ccn server

e (alls/casts map to simulated receive/reply
semantics

& 20 sriak

basho

Thursday, March 29, 2012

e System (2/2)

e [est consists of test module and a set of node
modules

o (Jllbacks

handle event, handle call, handle cast
after _event, after call, after cast
post_event, post_call, post_cast, always

e Jest module can generate events and test
properties against global test state

e Node modules generate events, calls, casts and test
local properties

bq 2| sriak

Thursday, March 29, 2012

SImple Example

 Nodes join together an form a cluster

* Nodes periodically gossip membership state to
other known nodes

& 22 sriak

basho

Thursday, March 29, 2012

Test Module

events(#state{nodes=Nodes}) ->
?EVENT(join, [elements(Nodes), elements(Nodes)]).

precondition(_, S, join, [Node,[OtherNode]]) ->
Singleton = S#state.singleton,
all([Node /= OtherNode,
lists:member(Node, Singleton),
(Singleton == S#state.nodes) or
lists:member(OtherNode, Singleton)]);

after_event(_Nodes, S, {join, [OtherNode]}, Node, _NodeState) ->
Singleton = S#state.singleton -- [Node, OtherNode],
S#state{singleton=Singleton};

© sriak

basho

Thursday, March 29, 2012

Test Node Module (1/3)

events(Node, #state{members=Members}) ->
?EVENT(gossip, [Node, [elements(Members)]]).

precondition(S, gossip, [Node, [OtherNode]]) ->
all([Llists:member(OtherNode, S#state.members),
Node /= OtherNode]);

©

basho

AN [0

K

Thursday, March 29, 2012

Test Node Module (2/3)

handle_event({join, [OtherNode]}, State) ->
call(State, OtherNode, get_members,

fun(Members) ->

MembersZ2 =
lists:sort([State#state.id | Members]),

Statel = State#state{members=Members?’},
{noreply, StateZ}

end);

handle_event({gossip, [0OtherNode]}, State) ->
cast(OtherNode, {gossip, State#state.members}),
{ok, State}.

© srio

basho

K

Thursday, March 29, 2012

Test Node Module (3/3)

handle_call(get_members, _From, State) ->
{reply, State#state.members, State}.

handle_cast({gossip, OtherMembers}, State) ->
MembersZ2 = merge(Members, OtherMembers),
{noreply, State#state{members=MembersZi}.

©

basho

AN [0

K

Thursday, March 29, 2012

—xample Command Sequence

[{init, {sys_state,undefined,undefined,rc,?,[],undefined,undefined,

model}},

{set,{var,1},{call,eqc_sys,init_dynamic,[]}},
{set,{var,2},{call,eqc_sys,init_system,[rc]}},

{set, {var,3},{call,rc,join, [3,[1]]1}},
{set,{var,4},{call,eqc_sys,rcvmsg,[1,{3,{call,get_members}}]}},
{set, {var,5},{call,rc,join, [2,[1]]1}},
{set,{var,6},{call,eqc_sys,rcvreply, [3,{1,[1]1}]1}},
{set,{var,7},{call,eqc_sys,rcvmsg,[1,{Z2,{call,get_members}}]}},
{set,{var,8},{call,eqc_sys,rcvreply,[2,{1,[1]1}]1}},

{set,{var,9},{call,rc_node,send_gossip,[3,[1]1]}},

{set, {var,10},{call,rc_ node send_gossip, [3,[1]]
{set,{var,11},{call,rc_node,send_gossip,[Z,[1]1]1}},
{set,{var,12},{call,rc_node,send_gossip,[3,[1]]

155,

b,

{set,{var,13},{call,eqc_sys,rcvmsg, [1,{3,{cast,{goss1ip,

©

basho

L et
{set,{var,14},{call,eqc_sys,rcvmsg, [1,{3, {cast,{gossip,

i

L1 oH Rt

11l

sriak

Thursday, March 29, 2012

-xtended Example

B [lister maintains a weak leader

L owest node 1d In the cluster Is considered the leader

No actual leader election or fallure detection

g operty we care about

At all times, there Is only one node that believe It is the
leader of a cluster

b©;, 28 sriak

Thursday, March 29, 2012

-xtended Node Module (1/3)

-record(state, {i1d, members, leader}).

handle_event({join, [OtherNode]}, _Node, State) ->
call(State, OtherNode, get_state,

fun(#state{members=Members, leader=Leader}) ->

MembersZ2 =
lists:sort([State#state.1d | Members]),
{noreply, State#state{members=MembersZ,
leader=Leader}}
end);

handle_event({send_gossip, [OtherNode]}, _Node, State) ->
cast(OtherNode, {gossip, State}),
{ok, State};

© srio

basho

K

Thursday, March 29, 2012

-xtended Node Module (2/3)

handle_call(get_state, _From, _Node, State) ->
{{reply, State}, State};

handle_cast({gossip,
#state{members=Members, leader=Leader}},
_From, _Node, State) ->
MembersZ2 = lists:usort(State#state.members ++ Members),
case State#tstate.id == State#state.leader of
true ->
Leader?
false ->
LeaderZ2 = Leader

hd(lists:sort(Members2));

end,
{noreply, State#state{members=MembersZ, leader=Leader?}};

© sriak

basho

Thursday, March 29, 2012

~xtended Node Module (3/3)

get_leader(S) ->
S#state. leader.

get_members(S) ->
S#state.members.

©

basho

AN | [o

K

Thursday, March 29, 2012

-xtended lest Module

always(Nodes, S) ->
all([begin

Members = nodecall(Nodes, Node, get_members, []),
one_leader(Nodes, Members)

end || Node <- S#state.nodes]).

one_leader(Nodes, Members) ->
Leaders = [Leader || Node <- Members,
Leader <- [nodecall(Nodes, Node,

get_leader, [])],
Leader == Node],

length(lists:usort(Leaders)) < 2.

bgo N ([o

Thursday, March 29, 2012

K

Counterexample

[{init, {sys_state,undefined,undefined,rc,?,[],undefined,undefined,model}},
{set,{var,1},{call,eqc_sys,init_dynamic,[]}},
{set,{var,’2},{call,eqc_sys,1init_system, [rc]}},
{set,{var,3},{call,rc,join,[1,[3]1]}},
{set,{var,4},{call,eqc_sys,rcvmsg,[3,{1,{call,get_state}}]}},
{set,{var,5},{call,eqc_sys,rcvreply,[1,{3,{state,3,[3],3}}1}},

{set, {var,6},{call,rc_node,send_gossip,[1,[3]1]}},
{set,{var,7},{call,eqc_sys,rcvmsg,[3,{1,{cast, {gossip,{state,1,[1,3],3}}}+}1}},
{set,{var,8},{call,rc_node,send_gossip,[3,[1]1]1}},
{set,{var,9},{call,rc_node,send_gossip,[1,[3]1]1}},
{set, {var,16},

{call,eqc_sys,rcvmsg,[3,{1,{cast, {gossip,{state,1,[1,3],3}}}}1}},
{set, {var,18%,

{call,eqc_sys,rcvmsg,[1,{3,{cast, {gossip,{state,3,[1,3],1}}}}1}}]

{postcondition, false}

© sriak

basho

Thursday, March 29, 2012

Versioned leader state

e Add version number to gossiped state
* [eader increments version when changed
* Node updates leader only It newer version

e After changes, model passes without issue

& 34 sriak

basho

Thursday, March 29, 2012

©

basho

Convert to Implementation

o

AN [o

K

Thursday, March 29, 2012

Convert to Implementation

e Convert model into actual iImplementation

e Majority of code reused

Sia idlesioned to mirrer Ol code

e Update model If as necessary and rerterate

b%o 2 W I'iG k

Thursday, March 29, 2012

©

basho

Jest Implementation

=

AN [o

K

Thursday, March 29, 2012

Recall model design

e Fvents

Commands that trigger system transitions

BRE llc/icasts

Emulated as commands in order for testing purposes

© 38 wriak

basho

Thursday, March 29, 2012

Testing Approach # |

e (Quickc

neck generates event sequences, not

£ llrcast

e bvents

S

mapped to equivalent iImplementation

constructs

* trlang tracing used to capture actual call/casts

that occurred

e Verify events + observed call/casts against
model and final cluster state

©

basho

39 sriak

Thursday, March 29, 2012

Testing Approach #2

e Modify implementation to enable controlling
message Interleaving

* Implemented as a proxy process that delays
forwarding messages until told to do so by test
module

* [nvestigating parse_transtorm option

& 40 sriak

basho

Thursday, March 29, 2012

Interacting with other tools

g ullse, [MIcErlang, Concuerror

All aimed at concurrency debugging

e [esting approach # | works well with these
tools

Generate event sequences + trace, but allow
scheduling tools to force interleavings

e [ested with Pulse and Concuerror

e Fven more confidence iIn model/code

& i sriak

basho

Thursday, March 29, 2012

BlErnations

i cqc sys

entirely random, may not hit lurking bad interleaving

& Fllse

also random

& icErang / Concuerror

state space usually too large

b©,; 42 sriak

Thursday, March 29, 2012

Coqg Proof Assistant

* Working on using Cog to prove model

e Cog script similar to Quickcheck model

Represent commands as a list constructed from a
BEHerale

Model are functions that operate over list, producing
state

Properties checked against state

Prove: Forall commands, properties always hold.

O = sriak

basho

Thursday, March 29, 2012

Coqg Challenges (1/2)

* Writing Coq scripts
Syntax (Basho Is an Erlang company)
Semantics (Mapping Erlang ideas to Coq)

* Working on Erlang to Coq generate that
works on subset of Erlang used In my models

Solves syntax Issues
Semantics are tricker, but approached as encountered

© 44 sriak

basho

Thursday, March 29, 2012

Coqg Challenges (2/2)

* Proving In Coq Is not automatic
* [edious process, not Basho specialty

* Working on domain-specific proof tactic and
ibrary of lemmas to enable automatead

* Inspired by Professor Chlipala’s book

nttp://adam.chlipala.net/cpdt

* Possibly hear more later this year

Personal project, so progress is slow

bg.l 45 sriak

Thursday, March 29, 2012

http://adam.chlipala.net/cpdt
http://adam.chlipala.net/cpdt

Model

Test

Implement

B-l-l-6

© sriak

basho

Thursday, March 29, 2012

B Ouickly == S5hip COFEt.

1

Getting a little closer

v

—n

basho

© 47 sriak

Questions!?

joe@basho. com
@jtuple

mailto:joe@basho.com
mailto:joe@basho.com

