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a distributed, scalable, and highly-
available datastore store.

Basho makes
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Basho is a start-up
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Ship Quickly Ship Correctly

Highly Available
Fault Tolerant

Enterprise

Start-up
Iterate
Agility
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Ship Quickly Ship Correctly

Highly Available
Fault Tolerant

Enterprise

Start-up
Iterate
Agility

Strive to reduce gap
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Erlang Is Indispensable
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• Built-in concurrency and distributed 
programming

• Fault-tolerant just-crash / supervisor mentality

• Ability to inspect VM state

• Hot load code loading
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Result?
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Majority of bugs are concurrent logic errors
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Testing Tools
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• Quickcheck
Property-based testing

• Pulse
Randomizing Erlang scheduler

• McErlang / Concuerror
Model checkers
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Quickcheck
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my_test() ->
    eqc:quickcheck(reverse_prop()).

reverse_prop() ->
    ?FORALL(L,
            list(int()),
            begin
                lists:reverse(lists:reverse(L)) == L
            end)
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Quickcheck eqc_statem
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Run against stateful code

Verify postconditions

Generate Command Sequence
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Quickcheck eqc_statem
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command(State) ->
    %% Commands to run against stateful system
    oneof(Cmds).

precondition(State, Cmd) ->
    %% Return true if cmd is valid in current state.

next_state(State, Result, Cmd) ->
    %% Update test state after a given cmd.

postcondition(State, Cmd, Result) ->
    %% Test postconditions.
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Testing Issues

• Building test from implementation often not 
straightforward

• Testing concurrent interleaving requires a 
different approach

• Building a great implementation of a broken 
algorithm is disheartening

13
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Test First Construction
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Build testable model
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Test
Iterate

Gain Confidence
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Convert model into implementation
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Verify implementation against model

Thursday, March 29, 2012



History
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• First built testable model for new clustering 
subsystem for Riak 1.0

• Model built on top of eqc_statem

• The test itself was the model of the system and 
tested properties against itself

• Somewhat ad-hoc, but it worked

Thursday, March 29, 2012



eqc_system (1/2)
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• Refactored the approach into general-purpose 
framework based on lessons learned

• Events
External events, timers, things you do not care to model

• Calls/Casts
Similar to OTP gen_server

• Calls/casts map to simulated receive/reply 
semantics
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eqc_system (2/2)
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• Test consists of test module and a set of node 
modules

• Callbacks
handle_event, handle_call, handle_cast
after_event, after_call, after_cast
post_event, post_call, post_cast, always

• Test module can generate events and test 
properties against global test state

• Node modules generate events, calls, casts and test 
local properties

Thursday, March 29, 2012



Simple Example

• Nodes join together an form a cluster

• Nodes periodically gossip membership state to 
other known nodes

22
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events(#state{nodes=Nodes}) ->
    ?EVENT(join, [elements(Nodes), elements(Nodes)]).

precondition(_, S, join, [Node,[OtherNode]]) ->
    Singleton = S#state.singleton,
    all([Node /= OtherNode,
         lists:member(Node, Singleton),
         (Singleton == S#state.nodes) or 
           lists:member(OtherNode, Singleton)]);

after_event(_Nodes, S, {join, [OtherNode]}, Node, _NodeState) ->
    Singleton = S#state.singleton -- [Node, OtherNode],
    S#state{singleton=Singleton};

Test Module
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events(Node, #state{members=Members}) ->
    ?EVENT(gossip, [Node, [elements(Members)]]).

precondition(S, gossip, [Node, [OtherNode]]) ->
    all([lists:member(OtherNode, S#state.members),
         Node /= OtherNode]);

Test Node Module (1/3)
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handle_event({join, [OtherNode]}, State) ->
    call(State, OtherNode, get_members,
         fun(Members) ->
                 Members2 =
                     lists:sort([State#state.id | Members]),
                 State2 = State#state{members=Members2},
                 {noreply, State2}
         end);

handle_event({gossip, [OtherNode]}, State) ->
    cast(OtherNode, {gossip, State#state.members}),
    {ok, State}.

Test Node Module (2/3)
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handle_call(get_members, _From, State) ->
    {reply, State#state.members, State}.

handle_cast({gossip, OtherMembers}, State) ->
    Members2 = merge(Members, OtherMembers),
    {noreply, State#state{members=Members2}}.

Test Node Module (3/3)
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[{init,{sys_state,undefined,undefined,rc,0,[],undefined,undefined,
        model}},
 {set,{var,1},{call,eqc_sys,init_dynamic,[]}},
 {set,{var,2},{call,eqc_sys,init_system,[rc]}},
 {set,{var,3},{call,rc,join,[3,[1]]}},
 {set,{var,4},{call,eqc_sys,rcvmsg,[1,{3,{call,get_members}}]}},
 {set,{var,5},{call,rc,join,[2,[1]]}},
 {set,{var,6},{call,eqc_sys,rcvreply,[3,{1,[1]}]}},
 {set,{var,7},{call,eqc_sys,rcvmsg,[1,{2,{call,get_members}}]}},
 {set,{var,8},{call,eqc_sys,rcvreply,[2,{1,[1]}]}},
 {set,{var,9},{call,rc_node,send_gossip,[3,[1]]}},
 {set,{var,10},{call,rc_node,send_gossip,[3,[1]]}},
 {set,{var,11},{call,rc_node,send_gossip,[2,[1]]}},
 {set,{var,12},{call,rc_node,send_gossip,[3,[1]]}},
 {set,{var,13},{call,eqc_sys,rcvmsg,[1,{3,{cast,{gossip,
[1,3]}}}]}},
 {set,{var,14},{call,eqc_sys,rcvmsg,[1,{3,{cast,{gossip,
[1,3]}}}]}}]

Example Command Sequence
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Extended Example

• Cluster maintains a weak leader
Lowest node id in the cluster is considered the leader
No actual leader election or failure detection

• Property we care about
At all times, there is only one node that believe it is the 
leader of a cluster

28
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-record(state, {id, members, leader}).

handle_event({join, [OtherNode]}, _Node, State) ->
    call(State, OtherNode, get_state,
         fun(#state{members=Members, leader=Leader}) ->
                 Members2 =
                     lists:sort([State#state.id | Members]),
                 {noreply, State#state{members=Members2,
                                       leader=Leader}}
         end);

handle_event({send_gossip, [OtherNode]}, _Node, State) ->
    cast(OtherNode, {gossip, State}),
    {ok, State};

Extended Node Module (1/3)
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handle_call(get_state, _From, _Node, State) ->
    {{reply, State}, State};

handle_cast({gossip,
             #state{members=Members, leader=Leader}},
            _From, _Node, State) ->
    Members2 = lists:usort(State#state.members ++ Members),
    case State#state.id == State#state.leader of
        true ->
            Leader2 = hd(lists:sort(Members2));
        false ->
            Leader2 = Leader
    end,
    {noreply, State#state{members=Members2, leader=Leader2}};

Extended Node Module (2/3)

Thursday, March 29, 2012



31

get_leader(S) ->
    S#state.leader.

get_members(S) ->
    S#state.members.

Extended Node Module (3/3)
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always(Nodes, S) ->
    all([begin
             Members = nodecall(Nodes, Node, get_members, []),
             one_leader(Nodes, Members)
         end || Node <- S#state.nodes]).

one_leader(Nodes, Members) ->
    Leaders = [Leader || Node <- Members,
                         Leader <- [nodecall(Nodes, Node,
                                             get_leader, [])],
                         Leader == Node],
    length(lists:usort(Leaders)) < 2.

Extended Test Module
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[{init,{sys_state,undefined,undefined,rc,0,[],undefined,undefined,model}},
 {set,{var,1},{call,eqc_sys,init_dynamic,[]}},
 {set,{var,2},{call,eqc_sys,init_system,[rc]}},
 {set,{var,3},{call,rc,join,[1,[3]]}},
 {set,{var,4},{call,eqc_sys,rcvmsg,[3,{1,{call,get_state}}]}},
 {set,{var,5},{call,eqc_sys,rcvreply,[1,{3,{state,3,[3],3}}]}},
 {set,{var,6},{call,rc_node,send_gossip,[1,[3]]}},
 {set,{var,7},{call,eqc_sys,rcvmsg,[3,{1,{cast,{gossip,{state,1,[1,3],3}}}}]}},
 {set,{var,8},{call,rc_node,send_gossip,[3,[1]]}},
 {set,{var,9},{call,rc_node,send_gossip,[1,[3]]}},
 {set,{var,16},
      {call,eqc_sys,rcvmsg,[3,{1,{cast,{gossip,{state,1,[1,3],3}}}}]}},
 {set,{var,18},
      {call,eqc_sys,rcvmsg,[1,{3,{cast,{gossip,{state,3,[1,3],1}}}}]}}]
{postcondition,false}

Counterexample
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Versioned leader state
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• Add version number to gossiped state

• Leader increments version when changed

• Node updates leader only if newer version

• After changes, model passes without issue
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Convert to Implementation
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Convert to Implementation
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• Convert model into actual implementation

• Majority of code reused
eqc_sys designed to mirror OTP code

• Update model if as necessary and reiterate
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Test Implementation
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Recall model design
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• Events
Commands that trigger system transitions

• Calls/casts
Emulated as commands in order for testing purposes
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Testing Approach #1

• Quickcheck generates event sequences, not 
call/casts

• Events mapped to equivalent implementation 
constructs

• Erlang tracing used to capture actual call/casts 
that occurred

• Verify events + observed call/casts against 
model and final cluster state

39
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Testing Approach #2

• Modify implementation to enable controlling 
message interleaving

• Implemented as a proxy process that delays 
forwarding messages until told to do so by test 
module

• Investigating parse_transform option

40
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Interacting with other tools

• Pulse, McErlang, Concuerror
All aimed at concurrency debugging

• Testing approach #1 works well with these 
tools
Generate event sequences + trace, but allow 
scheduling tools to force interleavings

• Tested with Pulse and Concuerror

• Even more confidence in model/code

41

Thursday, March 29, 2012



Limitations

• eqc_sys
entirely random, may not hit lurking bad interleaving

• Pulse
also random

• McErlang / Concuerror
state space usually too large

42
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Coq Proof Assistant

• Working on using Coq to prove model

• Coq script similar to Quickcheck model
Represent commands as a list constructed from a 
generate
Model are functions that operate over list, producing 
state
Properties checked against state
Prove: Forall commands, properties always hold.

43
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Coq Challenges (1/2)

• Writing Coq scripts
Syntax (Basho is an Erlang company)
Semantics (Mapping Erlang ideas to Coq)

• Working on Erlang to Coq generate that 
works on subset of Erlang used in my models
Solves syntax issues
Semantics are tricker, but approached as encountered

44
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Coq Challenges (2/2)

• Proving in Coq is not automatic

• Tedious process, not Basho specialty

• Working on domain-specific proof tactic and 
library of lemmas to enable automated

• Inspired by Professor Chlipala’s book
http://adam.chlipala.net/cpdt

• Possibly hear more later this year
Personal project, so progress is slow

45
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Test

Implement

Model

Verify
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Ship Quickly Ship Correctly

Getting a little closer
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Questions?

joe@basho.com
@jtuple
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