

Neuroevolution Through Erlang

Erlang Factory
San Francisco – March 2012

Gene I. Sher

The Figures/Images in this slide presentation are taken from:
”Handbook of Neuroevolution Through Erlang” 2012, Springer.

Talk Outline
● The General Idea
● Applications & Motivations
● Background

 Neural Networks
 Evolutionary Algorithms
 Neuroevolution

● Erlang: The Quentisential Neural Network Programming Language
 The necessary elements
 The architecture
 The mapping

● A Case Study
 The Genotype
 The Phenotype

 Exoself
 The Algorithm
 The Scape

 Infomorph
 Substrate Encoding

● Demonstrations of Applications
 Artificial Life
 Currency Trading

● Ongoing and Future Projects
 Cyberwarfare
 CPU Evolution
 UCAV Neurocontrollers
 NNRR

● My Book: ”Neuroevolution Through Erlang”, to be released by Springer towards the end of 2012.

The General Idea
A bootstrap for the next section

●Neural Networks are just groups of interconnected nodes/artificial neurons/neurodes
●An artificial neuron accepts an input signal, processes it, and produces an output signal.
●Multiple neurons can be connected to gether to produce complex processing systems.
●Such a system is called a neural network
●We can mutate, by modifying either its topology or other parameters
●Then see if it performs better or worse and go from there
●A NN with sensors and actuators is also called an intelligent agent

Evolution of intelligent agents

Seed NN population

Apply to
problem

Calculate
fitness scores

Select fit
NNs

Create
offspring

. . .

Neuroevolutionary Loop
A

NN Based Intelligent Agent
B

NN

Sensor Actuator

Intelligent Agent

Applications & Motivations
The why behind the subject computational

intelligence.

5

Robotics

NNPercepts

Actions

Scape

After many
generations...

NN
Evolved and
most fit NN

Real Robot

Upload

NNPercepts

Actions

Scape

NNPercepts

Actions

Scape

.

Neuroevolutionary Platform

Population
Monitor,

NN Sorter &
Mutator

.

Financial Analysis

1.2 1.3 1.35 1.2 1.5 1.4 1.4 1.5 1.4 ...

NN

1.1

1.2

1.3

1.4

1.5

1.6

Buy
Sell
Hold

NN's Account:

Balance: $1044
Position: 10000 JPY
Entry: $1.2
Current: $1.4
Unclaimed Profit: $2000

Current Fitness: 1044

1.2
Entry

Closing price
sliding window

Next
closing
price

Next
action

Scape
Current
price

Artificial Life

NN
Agent

NN
Agent

NN
Agent

Population
Monitor

NN
Agent

NN
Agent

Flatland

Image Analysis

NN
Actuator

Sensor encodes
image as a vectorSensor

polls the
scape for
image [O]

Cluster A
(happy)

Cluster B
(sad)

If O > 0, then
actuator chooses
Cluster-A (clusters
it as a happy face),
otherwise actuator
chooses Cluster-B
(clusters it as a sad
face).

NN makes
cluster choice

ScapeScape forwards
an image from
the training set

[0,0,0,0,0,0,0,0,
 0,1,1,0,0,1,1,0,
 0,1,1,0,0,1,1,0,
 0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,
 0,1,1,1,1,1,1,0,
 0,0,0,0,0,0,0,0]

Evolving Circuits

N

N

N

N

N

N N

N

N

N N

N

N N

NOT

AND

NOT

OR

AND

NOT OR

OR

AND

NOT OR

OR

AND NOT

Evolving Neural Network Topologies

Evolving Digital Circuit Topologies

10

Data Compression

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

-N-

Sensor Actuator

Input:
Vector of
length 10

Output:
Vector of
length 10

Compression
from Vector
length 10 to
vector length 5

NN

Cyber Warfare

network

Scape

Actions

network

Scape

NN
Percepts

Actions

NNPercepts NNPercepts

Actions

Neuroevolutionary Platform

Population
Monitor,

NN Sorter &
Mutator

.

network

Scape

.

Endgame Singularity
● The Long Standing Goals of Computational Intelligence
● Brain is just an organic-substrate based NN

 Blue Brain Project - http://bluebrain.epfl.ch/
 MoNETA (MOdular Neural Exploring Traveling Agent) project (from Boston University’s

Neuromorphics Lab)
 OpenCog Project
 Hugo de Garis, Shuo Chen, Ben Goertzel, Ruiting Lian: A world survey of artificial brain projects,

Part I: Large-scale brain simulations. Neurocomputing (IJON) 74(1-3):3-29 (2010)
 Ben Goertzel, Ruiting Lian, Itamar Arel, Hugo de Garis, Shuo Chen: A world survey of artificial

brain projects, Part II: Biologically inspired cognitive architectures. Neurocomputing (IJON) 74(1-
3):30-49 (2010)

 DARPA's SyNAPSE project

● Computer hardware is advancing steadily
● A programming language is needed with the right features
● Erlang: As the NN Programming Language

http://bluebrain.epfl.ch/

Background
● I will make a case for the use of Erlang within the

field of Computational Intelligence research and
development.

● Some background information is needed.
● We will briefly cover:

 Biological neural networks.
 Artificial neural networks.
 Evolutionary computation.
 Neuroevolution.

Neural Networks

● Vast networks of signal processors
● Concurrent processing
● Power in numbers
● Robust and fault tollerent
● Recovery from damage

15

Biological Neural Network

Biological neuron

● An biological
processing node

● Signal integration
● Spatiotemporal

signal processing
● Frequency encoding
● Biological limitations

Actual Biological Neuron

Signal Integration

Frequency Encoding

Whether the dendrites experience excitatory or inhibitory signals,
depends not only on the actual signal sent by the presynaptic
neuron, but also on the dendrites, their chemistry, receptors...

20

Spatiotemporal Processing

Plasticity

● Axon extension
● New dendrite branches
● More/less receptors
● Different signal integration properties due to

shape and other changes
● ...

Putting it all together

Artificial Neural Network

Artificial neuron

w0

w2

w1

wi

.

.

.

x0

x1

x2

xi

.

.

.

Aggregate
Apply
Activation
Function

[O]

Output

Input

Weigh each
input

Sum weighted
inputs

Apply AF to
summed
weighted inputs

M0=X0*W0,
M1=X1+W1
…
Mi=Xi*Wi

Aggregation =
M0+M1...+Mi

O =
AF(Aggregation)

25

The Input is Just a Vector

AF:tanh
Weights:
[0.5,0.2]

[-1,1]
OutputInput

1. Dot product:
DP=(0.5*-1) + (0.2*1)
Threshold = (0*1)

2. Activation strength:
Output = tanh(DP+Threshold)

[-0.29]

Neural Circuit In Action

A

B

C

[X1,X2]

[X1,X2]

[Y]

[1]

[1]

[1]

[O1]

[O2]

Input [X1,X2]: [-1,-1]
A: O1 = -0.9704 = tanh(-1*2.1081+
-1*2.2440 + 1*2.2533)
B: O2 = 0.9922= tanh(-1*3.4964 +
-1*-2.7464 + 1*3.5200)
C: Y = -0.99 = tanh(0.9922*-2.5983
+ -0.9704*2.7354 + 1*2.7255)

Input [X1,X2]: [-1,1]
A: O1 =0.9833 = tanh(-1*2.1081+
1*2.2440 + 1*2.2533)
B: O2 = -0.9914= tanh(-1*3.4964 +
1*-2.7464 + 1*3.5200)
C: Y = 0.99 = tanh(-0.9914*-2.5983
+ 0.9833*2.7354 + 1*2.7255)

Input [X1,X2]: [1,-1]
… C: Y = 0.99

Input [X1,X2]: [1,1]
... C: Y = -0.99

Y = C(A(X1*Wa
1
+ X2*Wa

2
+ 1*Wa

3
)*Wc

1
+

 B(X1*Wb

1
+ X2*Wb

2
+1*Wb

3
)*Wc

2
)

Neural Network

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

L1 L2 L3

3 Layers total

Layer Densities

 3 1 3

A Recurrent Neural Network

...494
xor_G
etInput

xor_S
endO
utput

The randomly evolved NN topology

-1 -0.5 0 0.5 1

...425

...396

...212

...407

Layer Indices

Error Backpropogation

[w_0]

[x_Bias]

[x_1]

[x_n]

E AF(s)[w_1]

[w_n]

[O]

.

.

.

[w_0]

[x_Bias]

[x_1]

[x_n]

E AF(s)[w_1]

[w_n]

[O]

.

.

.

[w_0]

[x_1]

[x_n]

E AF(s)[w_1]

[w_n]

[O].
.
.

[x_Bias]

.

.

.

e=Xi-Oib = e*AF'(s)

S

dw(i)=n*b*xi

U_Wi = Wi+dw(i)

e = w_n*b

b = e*AF'(s)dw(i)=n*b*xi

b = e*AF'(s)dw(i)=n*b*xi

e = w_1*b

S

S

8

8

7

9 7

5

5

4

1

23

69

6

30

Hebbian Learning

Sum bO = tanh(Acc)[aw
1
]

[bO][aO]

A B

1 2 3
4

heb

5

1. Neuron A sends the vector signal [aO] to B.
2. Signal aO is weighted with B's synaptic weight aw

1
.

3. The weighted signals (in this case just one) are
summed together to produce the value: Acc.
4. Activation function is applied to Acc to produce B's
output signal bO.
5. B outputs vector signal [bO], while at the same time
uses the Hebbian rule to produce a delta w, and update
the synaptic weight aw

1
.

5

Example: aw
1
 = 0.5, aO = 1, n = 1

1. Neuron A sends the vector signal [1] to B.
2. Signal 1 is weighted with B's synaptic weight 0.5 to
produce Y

1
 = x

1
*aw

1
 = 1*0.5 = 0.5.

3. The weighted signals (in this case just one, Y
1
) are

summed together: Acc = Sum(Y
1
) = 0.5.

4. Activation function tanh is applied to Acc to produce
B's output signal bO = tanh(Acc) = 0.46.
5. B outputs the vector signal [bO] = [0.46], while at the
same time uses the Hebbian rule to produce: dw = 0.46
= 0.46*1, and update the synaptic weight aw

1
. Thus, the

updated aw1 = 0.5 + 0.46 = 0.96. The new synaptic
weight is: aw

1
 = 0.96.

If we now continue running this update rule, with A firing
signals of the same magnitude, 1, the sequence of B's
weight aw

1
 is: 0,5, 0.962, 1.71, 2.64, 3.63, 4.63

The synaptic weight continues to increase in magnitude
over time.

Update Rule: U_W
i
 = W

i
 + n*X

i
*O

Where X
i
 is the presynaptic signal

associated with synaptic weight W
i
, and

where O is the postsynaptic neuron's
output, and n the learning parameter.

Learning Vs. Training
● Supervised

 Backpropagation
 ...

● Unsupervised
 Kohonan (Self-organizing) map
 Adaptive Resonance Theory
 Hebbian

 "The general idea is an old one, that any two cells or systems of cells that are repeatedly active at the same
time will tend to become 'associated', so that activity in one facilitates activity in the other." (Hebb 1949, p. 70)

 Modulated
 Evolutionary
 ….

Putting it all together

● Simulate biological
NNs to various
degrees of precision

● Directed graphs
● Parallel
● Learn, adapt, and

generalize

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

Ok ok... But what about the topology, and the
new learning parameters? How do I set them to
the values that produce useful system for some

problem?

Evolutionary Computation
● Based on evolutionary principles
● Stochastic search with a purpose

 Create as many copies of yourself as possible
 Some copies (offspring) will have errors when being copied

 Others are competing for resources
 Push towards finding an advantage
 Survival of the fittest

● Genotype to Phenotype
● Mutation and crossover

35

Evolution
● Start with inorganic molecules.
● Billions of planets, atoms and molecules hitting each other.
● Trillions of permutations, for billions of years, over billions of worlds, eventually one permutation will act in such a way that if some

appropriate set of atoms is around, simply based on its chemical properties it will convert those resources into the same type
molecule as itself. Replication on the most basic level.

● There could be no other way
● Replicators make copies of themselves.
● If you don't replicate, the replicators will use you as a resource to make copies of themselves.
● Copies are not perfect, there are errors.
● Most will be worse than the original replicators.
● Some will be better.
● Replicators interact with each other, beneficial errors (mutations), allow the agent to better compete with its own copies and others.
● Speciation occurs, those which can make more copies use more resources and overtake the environment... but sooner or later one

of their copies will have a beneficial mutation...
● This is competition at the chemical level.
● The organisms compete, they make the environment more complex as they interact with each other and the environment.
● To deal with complex environment, they become more complex.
● An innovation: A replicator with a protective shell, a cell body, a survivor machine (Richard Dawkins – The Selfish Gene).
● Result: an adaptive survival machine, an agent that is capable of surviving in a dynamic and hostile environment

Evolutionary Computation Flowchart
Initialize the
population

Create offspring
through

random variation

Evaluate fitness
of each candidate

solution

Apply selection
algorithm Terminate?

Yes

No

Extracting the most
important parts:

1. Replication.
2. Variation: Mutation.
3. Competition: Those that
are more fit, will survive
and make more mutant
copies of themselves.

Genotypes and Phenotypes

Search Space
(Genotype Space)

Solution Space
(Phenotype Space) Best solutions

possible

DNA → (RNA → Protien) →
Organism

Simple Genetic Algorithm Example

Genotypes

A 1001
B 0000
C 1010
D 0101

Phenotypes Genotypes

1110
0100
1010
0101

Phenotypes Genotypes

1110
1111
1010
0010

Simple Mutations

Genotypes

A 1001
B 0000
C 1010
D 0101

Phenotypes Genotypes

1011
1101
1010
0101

Phenotypes Genotypes

1011
1101
1001
1111

Crossover

Gen-1 Gen-2 Gen-3

Gen-1 Gen-2 Gen-3

Phenotypes

Phenotypes

40

Genetic Programming

*

+ tanh

x0.27x

Tree encoded genotype:

Phenotype: (x+0.27)*tanh(x)

Genetic Programming
*

+ tanh

x0.27x

/

sin pi

x

Agent: A Agent: B

*

+

0.27x

sin

x

Offspring of A & B
created through
crossover
between agent A
and B.

Agent: C

/

sin *

x

Offspring of B,
created by
mutating a clone
of B.

Agent: D

e x

Pi mutated
to *

New leaf
e added

New leaf
x added

Evolutionary Computation
Approaches

● Genetic Algorithms (John Holland, 73-75)
 Population of fixed length genotypes, bit strings, evolved through perturbation/crossing

● Genetic Programming (John Koza, 92)
 Variable sized chromosome based programs represented as treelike structures, with specially

crafted genetic operators

● Evolutionary Strategies (Ingo Rechenberg, 73)
 Normal distribution based, adaptive perturbations (self-adaptation)

● Evolutionary Programming (L. & D. Fogel, 63)
 Like ES, but for evolution of state transition tables for finite-state machines (FSMs)

Different sides of the same coin

*

+ X

x pi

+

0.1 tanh

x

x

0.1

pi

tanh

+ *

+

Leafs are inputs

Roots are inputs

Inputs Outputs

Tree Encoded Graph Encoded

In1

In2

In3

tanh

+ *

+

Inputs Outputs

In1

In2

In3

diode

OR AND

OR

Inputs Outputs

Graph Circuit

Towards Neuroevolution

*

+ X

x pi

+

0.1 tanh

x

x

0.1

pi

tanh

+ *

+

Leafs are inputs

Roots are inputs

Inputs Outputs

Tree Encoded Graph Encoded

N

N N

N

Input_1

Input_2

Output_2

Input_3

Output_1

Neural Network

45

Neuroevolution

Stochastic Hill Climber

AF:tanh
Weights:

[W]

1. [1]
2. [-1]

Output

Input

tanh(1*W)
Initial W = 1
I want: Output == 0

1. Output1 = tanh(1*1) = 0.76
 Output2 = tanh(1*-1) = -0.76

2. Weight Perturbation
Perturbation = -0.5
Try W = 0.5 = 1 - 0.5
Output1 = tanh(0.5*1) = 0.46
Output2 = tanh(0.5*-1) = -0.46
That's closer! New W = 0.5

3. Weight Perturbation
Perturbation = +0.2
Try W = 0.7 = 0.5 + 0.2
Output1 = tanh(0.7*1) = 0.60
Output2 = tanh(0.7*-1) = -0.60
Not as good as before, New W = 0.5

4. Weight Perturbation
Perturbation = -0.5
Try W = 0 = 0.5 - 0.5
Output1 = tanh(0*1) = 0 !!!
Output2 = tanh(0*-1) = 0 !!!

The right weight is 0.

What about topological mutation
operators

A

sensor

F

D B

Base Neural Network actuator

A

sensor

F

D B

actuator

A

sensor

F

D B

actuator

A

sensor

F

D B

actuator

A

sensor

F

D B

actuator

XX
Add neuron
x in parallel

Splice: Add
neuron x,
reconnect
D & B
through it

Add
connection
from sensor
to B

Add recurrent
connections
from F to A,
and B to D

Instead of evolving a single NN,
let's evolve a population

Input: [-1,-1]
Output: cos(-4.64*-1 + -4.79*-1) = -0.9999
Input: [-1, 1]
Output: cos(-4.64*-1 + -4.79*1) = 0.9889
Input: [1,-1]
Output: cos(-4.64*1 + -4.79*-1) = 0.9889
Input: [1, 1]
Output: cos(-4.64*1 + -4.79*1) =-0.9999

tanh Xor_
Output

Xor_
Input sin Xor_

Output
Xor_
Input abs Xor_

Output
Xor_
Input

Seed Population

cos Xor_
Output

Xor_
Input

W1: -0.1 W2: 0.23 W1: -1 W2: 2 W1: 0.11 W2: 0.53

sin

Xor_
Output

Xor_
Input

W1: 0.21 W2: 0.53

cos Xor_
Output

Xor_
Input

W1: -2 W2: -1

Fit: 70

tanh

sin Xor_
Output

Xor_
Input

W1: -1 W2: 2

W1: -1 W2: 2

cos Xor_
Output

Xor_
Input

W1: -2 W2: -1

cos Xor_
Output

Xor_
Input

W1: -4.64 W2: -4.79

cos Xor_
Output

Xor_
Input

W1: -2 W2: 0

Population champion

1 2 3

24 5

576

7

Topology and Weight Evolving
Artificial Neural Networks

● Populations and Fitness Functions
● Parametric mutation operators
● Topological mutation operators
● Other mutation operators

 Learning Algorithms
 Activation Functions
 Crystalization
 Full genome duplication
 …

50

TWEANN Cycle
Seed NN population

Apply to
problem

Calculate fitness
scores

Select fit
organisms

Create
offspring

Erlang: The Quintessential Erlang: The Quintessential
Neural Network Programming LanguageNeural Network Programming Language

The Unintentional Neural Network
Programming Language

”A list of features that a neural network based computational intelligence system needs, as quoted from
the list made by Bjarne Dacker [1], is as follows:̈

1. The system must be able to handle very large numbers of concurrent activities.

2. Actions must be performed at a certain point in time or within a certain time.

3. Systems may be distributed over several computers.

4. The system is used to control hardware.

5. The software systems are very large.

6. The system exhibits complex functionality such as, feature interaction.

7. The systems should be in continuous operation for many years.

8. Software maintenance (reconfiguration, etc) should be performed without stopping the system.

9. There are stringent quality, and reliability requirements.

10. Fault tolerance

Surprisingly enough, Dacker was not talking about a neural network based general computational ̈
intelligence systems when he made this list, he was talking about a telecom switching systems.”

[1] Bjarne Dacker. Concurrent functional programming for telecommunications: A case study of technology introduction. November 2000. Licentiate Thesis. ̈

Necessary Features for a NN-PL
(These will sound very familiar)

● Encapsulation
● Concurrency of Neuron primitives
● Fault detection primitives
● Location transparency
● Dynamic code upgrade

Erlang's Features

● Encapsulation primitives
● Concurrency
● Fault detection primitives
● Location transparency
● Dynamic code upgrade

55

The Topological 1:1 Mapping

Process

Process

Process

Process

Process

Process

Process

Process

Process,
driver for:
Sensor-1
“Camera”

Process,
Driver for:
Sensor-2
“Sonar”

Process,
driver for:
Actuator-1
“Camera
pan/tilt”

Process,
driver for:
Actuator-2
“Steering”

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Sensor-1
“Camera”

Sensor-2
“Sonar”

Actuator-1
“Camera
pan/tilt”

Actuator-2
“Steering”

1:1 Mapping

Neural Network
Based
Computational
Intelligence
System,
interfacing with a
robotic body

Representation of
the system in
Erlang

A simple neural network

-
Neuron

-

-Cortex-
(Monitors elements

 in the NN)

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

 Direction of signal propagation:

S-1

S-2

 A-1

 A-2

Monolithic NN Supervision Tree

NN_Sup

Supervisor

Sensor Actuator Neuron Neuron Neuron

Population
Monitor

Supervisors

Workers

Monitor Root
Supervisor

NN

The architecture of an Infomorph

-
Neuron

-

-Cortex-
(Monitors elements

 in the NN)

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

S-1

S-2

 A-1

 A-2

Environment

syncsync

Percepts Actions

An evolving NN population

NN
Agent

NN
Agent

NN
Agent

Population
Monitor

NN
Agent

NN
Agent

......

60

Groups of Neural Circuits

F_1
Input_1

Output_2Input_2

Output_1

The following Neural Network is composed from the above neural circuits. Since any function can
be created by a neural circuit, the NNs are just as flexible as a genetic programming based
system.

Function_1

sin tanh

Function_2

sin
tanh

tanh

tanh

tanh

Function_3

tanh

tanh

Function_4

tanh

Various functions created through neural circuits, which are universal function approximators

F_2 F_1

F_3 F_1

F_4

Modular NNs

Camera

Distance_Sensor

Chemical_Sensor

Pressure_Sensor

EM_Analyzer

Camera_PanTilt

DS_PanTilt

CS_PanTilt

PS_PanTilt

EMA_PanTilt

ServoMotors_Controller

Piezoelectric_Transducer

Hopfield
Network

Kohonen
Network

Neuromodulator

ART_NN

Substrate
Encoded

NN

Static
Recurrent

NN

What Erlang Offers to the Field of
NN Research

● Augmenting topologies live

● Full distribution and utilization of hardware

● Fault tolerance; ”stroke recovery”

● 1:1 mapping, from ideas to prototype systems
 No need to overcome linguistic determinism

● Switching and adding new modules, no matter what
they do, can be done live with code hotswappig

● Flexibility... in everything.

DXNN: A Case Study

Genotype Example
Id: 2

W: 0.3

Id: 3
W: -0.1

Id: 1
Id: 4

W1: 1
W2: 0

{NN_System_Id=nn1,[
 {id={sensor_function_name,1},
 input_IdPs=void,output_Ids=[{neuron,2},{neuron,3}]},
 {id={neuron,2},
 input_IdPs=[{{sensor,1},0.3}],output_Ids=[{neuron,4}]},
 {id={neuron,3},
 input_IdPs=[{{sensor,1},-0.1}], output_Ids=[{neuron,4}]},
 {id={neuron,4},
 input_idps=[{{neuron,2},1},{{neuron,3},0}],output_ids=[{actuator,5}]},
 {id={actuator_function_name,5},
 input_idps=[{neuron4}], output_ids=void}]}.

Id: 5

Id: 2
W: 0.3

Id: 3
W: -0.1

Id: 4
W1: 1
W2: 0
W3: 2

Id: 6
W: 0.5

Id: 4
W1: 1

Id: 2
W: 0.3

Id: 1 Id: 5

Id: 1 Id: 5

{NN_System_Id=nn1,[
 {id={sensor_function_name,1},
 input_IdPs=void,output_Ids=[{neuron,2},{neuron,3},{neuron,6}]},
 {id={neuron,2},
 input_IdPs=[{{sensor,1},0.3}],output_Ids=[{neuron,4}]},
 {id={neuron,3},
 input_IdPs=[{{sensor,1},-0.1}], output_Ids=[{neuron,4}]},
 {id={neuron,4},
 input_idps=[{{neuron,2},1},{{neuron,3},0},{{neuron,6},2}],
 output_ids=[{actuator,5}]},
 {id={neuron,6},
 input_idps=[{{sensor,1},0.5}],output_ids=[{neuron,4}]},
 {id={actuator_function_name,5},
 input_idps=[{neuron4}], output_ids=void}]}.

Initial Neural Network Genotype

{NN_System_Id=nn1,[
 {id={sensor_function_name,1},
 input_IdPs=void,output_Ids=[{neuron,2},{neuron,3}]},
 {id={neuron,2},
 input_IdPs=[{{sensor,1},0.3}],output_Ids=[{neuron,4}]},
 {id={neuron,3},
 input_IdPs=[{{sensor,1},-0.1}], output_Ids=[{neuron,4}]},
 {id={neuron,4},
 input_idps=[{{neuron,2},1},{{neuron,3},0}],output_ids=[{actuator,5}]},
 {id={actuator_function_name,5},
 input_idps=[{neuron4}], output_ids=void}]}.

After adding element: {neuron,6} to the initial genotype

After removing element: {neuron,3} from the initial genotype

65

Mnesia as Storage for Genotypes

● Robust and safe
● Tuple friendly
● Easy atomic mutations

 If any part of the mutation fails, the whole
mutation is just retracted automatically

The Infomorph's Phenotype
(Neural)

N

Cx

N

N

N

S A

Environment

sync

sync

Percepts Actions

exoself

NN System

* Monitor signals
* Fitness
* Selfmod. requests

* Weight optimization
* Weight restoration
* Genotype backup

The Infomorph's Phenotype
(Substrate)

Cx

S

 A

Environment

sync
sync

Percepts Actions

Substrate Encoded
NN System

* Monitor signals
* Fitness
* Selfmod. requests

* Weight optimization
* Weight restoration
* Genotype backup

NN

Substrate

exoself

Substrate Encoding (continued)

Fully connected 3d substrate topology

X

Y

Z
1-1 0

-1

0

1

1
0

-1

Not all connections are shown X

Y

Z
1-1 0

-1

0

1

1
0

-1

Not all connections are shown

“Freeform” 3d substrate topology

NN
Neurode coordinates:
[X1,Y1,Z1,X2,Y2,Z2]

Synaptic weight: [W]
NN

Neurode coordinates:
[X1,Y1,Z1,X2,Y2,Z2]

Synaptic weight and
expression: [W,E]

A B

Memetic Algorithm Based
TWEANN

Seed NN population

Apply to
problem

Calculate fitness
scores

Select fit
organisms

Create
offspring

Local Search:
 Hill Climber

The Learning algorithm is as follows:
0. Create seed population of NN agents.
1. Spawn (convert genotype to phenotype) a
population of agents.
2. Each agent interacts with the environment or
some problems.
3. Each agent gets a fitness evaluation.
4. A process called exoself perturbs agent's
synaptic weights.
5. Applies it to the problem again.
6. And if its performance increases, then this new
synaptic weight combination is considered best,
and we again perturb the synaptic weights. If the
new performance is worse, then we revert to
previous best, and perturb the synaptic weights.
7. Eventually all agents have had their synaptic
weights tuned, and the fitness scores of the
agents is compared.
8. Fitter agents allowed to create more offspring.
9. Goto: 1

Scape & Morphology

Percepts

Actions

NN NN NNPercepts

Actions

Percepts

Actions

Fitness Gage

Public Scape

Percepts

Actions

NN1 NN2Percepts

Actions

Cart

Pole balancing
simulation

Private Scape

Fitness Gage

Cart

Pole balancing
simulation

Private Scape

Fitness Gage

This is how my NN based agents
interact with problems/simulated
environments.

DXNN

Private

Specie

Population

Public

Neuroevolutionary Platform

Specie

PrivatePrivate

Specie

Population

PrivatePrivate

Public

Error Logger

Stat. Accumulator

BA A B C

1
1 2

1 2

Database

polis

The Pole Balancing Benchmark

Percepts

Actions

Agent Agent
Percepts

Actions

Cart

Private Scape

Cart

Private Scape

A. Single pole balancing simulation B. Double pole balancing simulation

75

Double Pole Balancing Benchmark

Method Without-Damping With-Damping
RWG 415209 1232296

SANE 262700 451612

CNE 76906 87623

ESP 7374 26342

NEAT --- 6929

CMA-ES* 3521 6061

CoSyNE* 1249 3416

DXNN 2359 2313

Benchmark data taken from: Faustino “Gomez, Jurgen Schmidhuber, Risto Miikkulainen,: Accelerated Neural
Evolution through Cooperatively Coevolved Synapses. Journal of Machine Learning Research 9 (2008) 937-965”

Complexification and Elaboration

● Start with a simple initial topology
● Add to and elaborate on the topology during

mutation phases
● Apply parametric mutations only to the newly

created Neurons
● Scale the fitness scores based on NN size

Demonstrations of Applications

Artificial Life

● Simple Food Gathering
● Dangerous Food Gathering
● Predator Vs. Prey

NN
Agent

NN
Agent

NN
Agent

Population
Monitor

NN
Agent

NN
Agent

Flatland

PredatorPrey

Plant

Poison

90 Degree Coverage
Resolution: 5 Sensors Available:

* Range Sensor:
Resolution-5

* Color Sensor:
Resolution-5

Actuators Available:
* Differential Drive

No
intersection

 -1 -0.5 0 0.5 1

Color to floating point encoding:

+500 Energy

-2000 Energy

Simple Food
Gathering

80

Dangerous
Food

Gathering

Predator Vs. Prey

Forex Trading

● Trading using sliding window
● Trading using chart window

1.2 1.3 1.35 1.2 1.5 1.4 1.4 1.5 1.4 ...

1.1
1.2

1.3

1.4

1.5

1.6

Private Scape: fx_sim

Current price

{From,sense,TableNa...

{From,sense,internals...

{From,trade...

Account:
Net_Worth:X

Position:Y
Order:Z

...

Receive

Agent

6

2

12

11
15

1
7

9

10

4

3

13

5

8

14

16
17

18

The Substrate Topology
A four dimensional substrate

Connected Neurode coordinates:
 [X1,Y1,Z1,K1,X2,Y2,Z2,K2] Synaptic Weight: [W]

Not all connections are shown

K

Z

Y

X

Z

Y

X

Z

Y

X

Price Chart

-1 0 1

[Position,Entry,PercentageChange]

NN

Forex Trading Results
TrnAvg TrnBst TstWrst TstAvg TstStd TstBst Price Vector Sensor Type

540 550 225 298 13 356 [SlidWindow5]

523 548 245 293 16 331 [SlidWindow10]

537 538 235 293 15 353 [SlidWindow20]

525 526 266 300 9 353 [SlidWindow50]

548 558 284 304 14 367 [SlidWindow100]

462 481 214 284 32 346 [ChartPlane5X10]

454 466 232 297 38 355 [ChartPlane5X20]

517 527 180 238 32 300 [ChartPlane10X10]

505 514 180 230 26 292 [ChartPlane10X20]

546 559 189 254 29 315 [ChartPlane20X10]

545 557 212 272 36 328 [ChartPlane20X20]

532 541 235 279 23 323 [ChartPlane50X10]

558 567 231 270 20 354 [ChartPlane50X20]

538 545 256 310 37 388 [ChartPlane100x10]

311 N/A N/A 300 N/A N/A Buy & Hold

N/A 704 N/A N/A N/A 428 Max Possible

85

Generalization
Results

Ongoing and Future Projects

Cyberwarfare

NN NN NN

Neuroevolutionary Platform

Population
Monitor,

NN Sorter &
Mutator

.

network

Scape

Evolving UCAV Neurocontrollers

NN

Scape

Population
Monitor,

NN Sorter &
Mutator

NN NN

Scape

NN NN

Scape

NN NN

Scape

NN

1a
1b 1a 2b Na

1b Na
Nb

Every NN from Species 'a'
is put against every NN
from Species 'b'. In this
manner, after all the NNs
have battled, each NN will
have a complete fitness
score.

......

Evolving & Optimizing
OpenSPARC

● Architecture is open and available:
http://www.opensparc.net/

● Recreate the CPU architeture using DXNN's tuple
balsed genotype encoding

● Evolve new modules
 Branch predictors have been evolved for a while now.

● Optimize existing modules
● Test suite available

90

http://www.opensparc.net/

DXNN Research Group

● www.DXNNResearch.com
● Book: Handbook of Neuroevolution Through

Erlang
 Author: Gene Sher
 Foreword: Joe Armstrong
 Publisher: Springer
 Release: Towards the end of 2012

http://www.DXNNResearch.com/

Neural Network Research
Repository

● A repository of evolved NN based agents:
 With problem, and general setup specifications.
 Ready to use solutions.
 Database for general pattern mining.

● Modularized and decoupled architecture:
 People can work on any one feature or module without

interfering or worrying about the rest.
 Add new features and modules.
 Have access to new features and modules.
 Crowedsourcing, rapidly expand to numerous application areas.

Thanks! Questions?
● References, Preprints, Articles...

 Gene I. Sher (2012) ”Neuroevolution Through Erlang”, book to be published towards the end of 2012, by Springer.

 Gene I. Sher (2012) Preprint: “Evolving Chart Pattern Sensitive Neural Network Based Forex Trading Agents”

 Gene I. Sher (2011) Preprint: “DXNN Platform: The Shedding of Biological Inefficiencies” found at: http://arxiv.org/abs/1011.6022

 Gene I. Sher (2011) “DXNN: Evolving Complex Organisms in Complex Environments Using a Novel TWEANN System”. Proceedings of the
Genetic and Evolutionary Computation Conference 2011. Dublin, Ireland. found at:http://dl.acm.org/citation.cfm?id=2001942

 www.DXNNResearch.com

● Get the code
● https://github.com/CorticalComputer/

 DXNN2 which is developed within my book, will be uploaded to github
within a few weeks.

● Get in touch
 CorticalComputer@gmail.com

http://arxiv.org/abs/1011.6022
http://dl.acm.org/citation.cfm?id=2001942

END

