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My talk today is about a new programming language on top of the Erlang VM called Elixir. I 
am not going to spend a lot of time talking about the syntax and how to X or Y, you are 
better off with those if you read the Getting Started guide. Instead, I am better off to make an 
impression if we discuss the reasons and goals behind Elixir. 



Why?
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I come from a web development background, I am co-founder of a consultancy company in 
Brazil, and we have huge clients, mainly from publishing and media companies. I am working 
with web for 8 years already.



The web is
CHANGING
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The web changed a lot in the last 10 years. And if we look at the next 10 years ahead, it will 
continue changing. And I believe those changes make a strong bet for Elixir and the Erlang 
ecosystem.



case #1

SPDY
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client server

keep-alive
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client server

pipeline

Wednesday, March 7, 2012



CGI
response

foo.pl

ENV STDOUT

request
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This abstraction no longer works. Well, it could be made to work, but it would be 
unnecessarily complex.



case #2

Smarter
clients
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Long-running connections

Binary serialization protocols

Paradigm shift
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case #3

Multi-core
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I want to be able to use all core on my machines without a need to start many, many 
processes. Most web applications today are single-process, few languages get concurrency 
properly.



Which technology is well-known 
for handling many long-running, 

concurrent connections?
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Erlang has proven time after time that it is a good solution for these problems.



What?
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Now that we know “why?” I want to explain what we want to achieve with Elixir.
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I am part of the Rails Core Team, one of the biggest web frameworks out there. Rails main 
focus is not on performance, but enhanced developer productivity. There are many aspects of 
Ruby, an extremely dynamic language, that make Rails possible, how can we achieve that for 
the Erlang VM?



goal #1

Productivity
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goal #2

Extensibility
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This is a very thin line because sometimes you may need to do trade-offs between 
extensibility and robustness.
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The Erlang Environment has accumulated many tools and practices throughout time. Robust, 
fault-tolerant applications with hot code swap are characteristics we plain to maintain.



DISTRIBUTED
FAULT-TOLERANT
APPLICATIONS
WITH HOT-CODE
SWAPPING

Wednesday, March 7, 2012

file://localhost/Users/jose/Desktop/erlang-logo.svg
file://localhost/Users/jose/Desktop/erlang-logo.svg


goal #3

Compatibility
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How?
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How Elixir helps us achieve those goals?



feat #1

Homoiconicity
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is_atom(:foo)

function line args

atom

{ :is_atom, 1, [:foo] }
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1 + 2

function line args

{ :+, 1, [1,2] }
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defmacro unless(expr, opts) do
  quote do
    if(!unquote(expr), unquote(opts))
  end
end

unless(true, do: exit())

elixir
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DOMAIN
SPECIFIC
LANGUAGES
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It allows us to create constructs specific to the domain we are tackling, allowing libraries/
frameworks to create higher abstractions for us so we can enjoy higher productivity.
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respond_to(request) do
html:
  response.render("template")
json:
  response.ok(to_json(record))
end

elixir
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2. Detect formats available

3. Invoke the negotiated format

1. Inspect Accept header
Accept: text/html,application/json;q=0.9,*/*;

respond to html or json

response.render("template")
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feat #2

Executable
definition
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Makes a good mix with macros in order to generate specific modules.



-module(foo).

sum(A, B) -> A + B.

erlang
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-module(foo).
io:format("hello").
sum(A, B) -> A + B.
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defmodule Foo do
  IO.puts "hello"

  def sum(a, b) do
    a + b
  end
end

elixir
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defmodule Post do
  has_many(:comments)
end

elixir
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And has many will generate code that will make associating posts and comments easier. 
There are many Erlang DB mappers that implements similar constructs using callbacks or 
attributes but it usually require playing with the Erlang code loader or parse transforms. Since 
in Elixir it is supported by the language, the implementation is much simpler. Remember less 
code, less bugs!



feat #3

Protocols
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Protocols are a mechanism to implement polymorphism.



-module(json).
to_json(Item) when is_list(Item) ->
to_json(Item) when is_binary(Item) ->
to_json(Item) when is_number(Item) ->

erlang
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defprotocol JSON, [
  to_json(item)
]

elixir
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defimpl JSON, for: List do
  # ...
end
elixir

defimpl JSON, for: Binary do
  # ...
end

defimpl JSON, for: Number do
  # ...
end
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defimpl JSON, for: Array do
  # ...
end

elixir
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feat #4

Compatibility
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There is no conversion 
cost for calling Erlang 

from Elixir and vice-versa
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lists:flatten([1,2,3])

erlang

atom
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elixir

:lists.flatten([1,2,3])

atom
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elixir

Erlang.lists.flatten([1,2,3])
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elixir

require Erlang.lists, as: List
List.flatten([1,2,3])
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You can write Elixir code 
that when compiled has no 
dependency at all on Elixir
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feat #5

References
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feat #6

Dynamic
Records
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When?
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March: Release v0.9 of Elixir

May: Beta release of Dynamo

Today: Release of the website
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