
@elixirlang / elixir-lang.org
Wednesday, March 7, 2012

My talk today is about a new programming language on top of the Erlang VM called Elixir. I
am not going to spend a lot of time talking about the syntax and how to X or Y, you are
better off with those if you read the Getting Started guide. Instead, I am better off to make an
impression if we discuss the reasons and goals behind Elixir.

Why?
Wednesday, March 7, 2012

@plataformatec / plataformatec.com.br
Wednesday, March 7, 2012

I come from a web development background, I am co-founder of a consultancy company in
Brazil, and we have huge clients, mainly from publishing and media companies. I am working
with web for 8 years already.

The web is
CHANGING

Wednesday, March 7, 2012

The web changed a lot in the last 10 years. And if we look at the next 10 years ahead, it will
continue changing. And I believe those changes make a strong bet for Elixir and the Erlang
ecosystem.

case #1

SPDY

Wednesday, March 7, 2012

Wednesday, March 7, 2012

client server

keep-alive

Wednesday, March 7, 2012

client server

pipeline

Wednesday, March 7, 2012

CGI
response

foo.pl

ENV STDOUT

request

Wednesday, March 7, 2012

This abstraction no longer works. Well, it could be made to work, but it would be
unnecessarily complex.

case #2

Smarter
clients

Wednesday, March 7, 2012

Wednesday, March 7, 2012

Long-running connections

Binary serialization protocols

Paradigm shift

Wednesday, March 7, 2012

case #3

Multi-core

Wednesday, March 7, 2012

I want to be able to use all core on my machines without a need to start many, many
processes. Most web applications today are single-process, few languages get concurrency
properly.

Which technology is well-known
for handling many long-running,

concurrent connections?

Wednesday, March 7, 2012

file://localhost/Users/jose/Desktop/erlang-logo.svg
file://localhost/Users/jose/Desktop/erlang-logo.svg

Wednesday, March 7, 2012

Erlang has proven time after time that it is a good solution for these problems.

What?
Wednesday, March 7, 2012

Now that we know “why?” I want to explain what we want to achieve with Elixir.

Wednesday, March 7, 2012

I am part of the Rails Core Team, one of the biggest web frameworks out there. Rails main
focus is not on performance, but enhanced developer productivity. There are many aspects of
Ruby, an extremely dynamic language, that make Rails possible, how can we achieve that for
the Erlang VM?

goal #1

Productivity

Wednesday, March 7, 2012

goal #2

Extensibility

Wednesday, March 7, 2012

This is a very thin line because sometimes you may need to do trade-offs between
extensibility and robustness.

Wednesday, March 7, 2012

The Erlang Environment has accumulated many tools and practices throughout time. Robust,
fault-tolerant applications with hot code swap are characteristics we plain to maintain.

DISTRIBUTED
FAULT-TOLERANT
APPLICATIONS
WITH HOT-CODE
SWAPPING

Wednesday, March 7, 2012

file://localhost/Users/jose/Desktop/erlang-logo.svg
file://localhost/Users/jose/Desktop/erlang-logo.svg

goal #3

Compatibility

Wednesday, March 7, 2012

How?
Wednesday, March 7, 2012

How Elixir helps us achieve those goals?

feat #1

Homoiconicity

Wednesday, March 7, 2012

is_atom(:foo)

function line args

atom

{ :is_atom, 1, [:foo] }

Wednesday, March 7, 2012

1 + 2

function line args

{ :+, 1, [1,2] }

Wednesday, March 7, 2012

defmacro unless(expr, opts) do
 quote do
 if(!unquote(expr), unquote(opts))
 end
end

unless(true, do: exit())

elixir

Wednesday, March 7, 2012

DOMAIN
SPECIFIC
LANGUAGES

Wednesday, March 7, 2012

It allows us to create constructs specific to the domain we are tackling, allowing libraries/
frameworks to create higher abstractions for us so we can enjoy higher productivity.

file://localhost/Users/jose/Desktop/erlang-logo.svg
file://localhost/Users/jose/Desktop/erlang-logo.svg

respond_to(request) do
html:
 response.render("template")
json:
 response.ok(to_json(record))
end

elixir

Wednesday, March 7, 2012

2. Detect formats available

3. Invoke the negotiated format

1. Inspect Accept header
Accept: text/html,application/json;q=0.9,*/*;

respond to html or json

response.render("template")
Wednesday, March 7, 2012

feat #2

Executable
definition

Wednesday, March 7, 2012

Makes a good mix with macros in order to generate specific modules.

-module(foo).

sum(A, B) -> A + B.

erlang

Wednesday, March 7, 2012

-module(foo).
io:format("hello").
sum(A, B) -> A + B.

Wednesday, March 7, 2012

defmodule Foo do
 IO.puts "hello"

 def sum(a, b) do
 a + b
 end
end

elixir

Wednesday, March 7, 2012

defmodule Post do
 has_many(:comments)
end

elixir

Wednesday, March 7, 2012

And has many will generate code that will make associating posts and comments easier.
There are many Erlang DB mappers that implements similar constructs using callbacks or
attributes but it usually require playing with the Erlang code loader or parse transforms. Since
in Elixir it is supported by the language, the implementation is much simpler. Remember less
code, less bugs!

feat #3

Protocols

Wednesday, March 7, 2012

Protocols are a mechanism to implement polymorphism.

-module(json).
to_json(Item) when is_list(Item) ->
to_json(Item) when is_binary(Item) ->
to_json(Item) when is_number(Item) ->

erlang

Wednesday, March 7, 2012

defprotocol JSON, [
 to_json(item)
]

elixir

Wednesday, March 7, 2012

defimpl JSON, for: List do
 # ...
end
elixir

defimpl JSON, for: Binary do
 # ...
end

defimpl JSON, for: Number do
 # ...
end

Wednesday, March 7, 2012

defimpl JSON, for: Array do
 # ...
end

elixir

Wednesday, March 7, 2012

feat #4

Compatibility

Wednesday, March 7, 2012

There is no conversion
cost for calling Erlang

from Elixir and vice-versa

Wednesday, March 7, 2012

file://localhost/Users/jose/Desktop/erlang-logo.svg
file://localhost/Users/jose/Desktop/erlang-logo.svg

lists:flatten([1,2,3])

erlang

atom

Wednesday, March 7, 2012

elixir

:lists.flatten([1,2,3])

atom

Wednesday, March 7, 2012

elixir

Erlang.lists.flatten([1,2,3])

Wednesday, March 7, 2012

elixir

require Erlang.lists, as: List
List.flatten([1,2,3])

Wednesday, March 7, 2012

You can write Elixir code
that when compiled has no
dependency at all on Elixir

Wednesday, March 7, 2012

file://localhost/Users/jose/Desktop/erlang-logo.svg
file://localhost/Users/jose/Desktop/erlang-logo.svg

feat #5

References

Wednesday, March 7, 2012

feat #6

Dynamic
Records

Wednesday, March 7, 2012

When?
Wednesday, March 7, 2012

March: Release v0.9 of Elixir

May: Beta release of Dynamo

Today: Release of the website

Wednesday, March 7, 2012

Wednesday, March 7, 2012

@elixirlang / elixir-lang.org
Wednesday, March 7, 2012

