

Erlang-based Software Update
Platform for remote devices

Authors:

Roman Janusz

Tomasz Kowal

Przemysław Dąbek

Małgorzata Wielgus

supervised by dr inż. Wojciech Turek

Content

● Device description
● Use case example
● Requirements
● Technologies
● Architecture

Beagleboard

Use case

Monitoring traffic in Cracow

Requirements

● mass automatic upgrades

● reliability

● fine-grained control over
upgrade process

● easy to install and use

● sending small amount of
data via network

Erlang Features

● massively parallel

● fault tolerant

● hot code swapping

● mass automatic upgrades

● reliability

● fine-grained control over
upgrade process

● easy to install and use

● sending small amount of
data via network

DPKG advantages

● mass automatic
upgrades

● reliability

● fine-grained control
over upgrade process

● easy to install and use

● sending small amount
of data via network

● massively parallel

● reliable

● hot code swapping

● easy to use

● saves bandwidth

Glossary

Erlang System

Erlang Node

Erlang Release

OTP Application(s)

Erlang modules

Design and architecture details

● Remote software development model
● Package manager integration
● General platform architecture
● Communication protocol

Development model

● Developer maintains an Erlang OTP release
● Main tool for building – rebar

● A few helpful scripts
● genrelup for generation of relup files

● makebasedeb, makeappdeb, makereldeb –
for easy generation of .deb packages

Package manager integration

● a layer over native erlang release handling

● native erlang api is called by maintainer scripts
● preserves ability to gain from hot code swapping

● benefits

● easy manual device administration
● saves bandwidth during upgrade - thanks to automatic

dependency resolution

● dpkg (apt, aptitude, …) - integrated for now

Decomposition into .deb files

Platform architecture

Communication protocol

● Management sessions

● Always initiated by the device

● Possibility of connection requests

● Protocol – gen_tcp, term_to_binary, binary_to_term

● Generic, simple and extensible

Management session

● Initiated by device with an inform message
● Server looks into the message and database

and decides what to do
● Server sends job to device
● Device performs job and sends back result
● Server sends another job or closes session

Summary

● Development model for erlang software on embedded
devices with usage of rebar

● Mass management of remote devices

● Easy maintenance thanks to package manager

● Optimized size of downloads during upgrade

● Usage of hot code swapping – little downtime and fine-
grained control over upgrade

Future development

● More general management platform
● Another package managers (rpm, pacman, …)

● Erlang distributed application management

Repository – open for clones!

https://github.com/tomekowal/SUP

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18

