

Erlang on Xen

A quest to lower startup latency

Erlang Factory SF Bay Area 2012

Erlang as OS

Erlang duplicates many OS features in user space – it even dumps core when crashes

A traffic grows in spikes, so sharp that they may even go unnoticed by monitoring

Broken Promises

- The greatest promise of rented IT infrastructure: start small and grow as needed – is unfulfilled
- "Slashdot effect" make it impossible to provision new computing nodes in real time
- In practice options are limited:
 - Have a x10-x100 redundancy upfront
 - Restrict dynamic content
 - Built a scalable cloud in house

Internet quotes about EC2:

"If a new server is needed, it takes around 40 seconds to start up."

"The time before you can log in to a Windows instance – 40min"

Enter Erlang on Xen

Running Erlang as a Xen guest removes a redundant OS layer

Preliminary Results

Startup Latency

- 80% page table setup
 - the spot to optimize delay page table setup
- 15% network driver initialization
 - speedier initialization unlikely
- 5% Erlang-related initialization (hashing atom and export table, etc)
 - further optimization not justified

Emulator Tests

6 test suites done	lists_SUITE	
	tuple_SUITE	
	list_bif_SUITE	
	binary_SUITE (5 skipped, 3 failed)	
	bs_bincomp_SUITE (1 skipped)	
	bs_bit_binaries_SUITE (1 skipped)	
13 test suites to go	bs_construct_SUITE	
	bs_match_bin_SUITE	
	bs_match_int_SUITE	
	bs_match_misc_SUITE	
	bs_match_tail_SUITE	
	bs_utf_SUITE	
	big_SUITE	
	exception_SUITE	
	float_SUITE	
	fun_SUITE	All Ok
	guard_SUITE	Partially
	num_bif_SUITE	
	ref_SUITE	

Under the Hood

- No code transformation preloaded modules are ready to go (almost)
- Dynamic instruction specialization derived from frequency analysis
- No external library dependencies (almost)
- No TCP/IP stack and no block device drivers
- 32-bit x86 only
- ~35K SLOC of C, 7K SLOC of Erlang no code borrowed from Erlang/OTP

The Vision

"A super-elastic computing fabric for Erlang":

A shared Erlang-application infrastructure capable of provisioning computing nodes in real time, after the client application receives a request; a platform that may scale a client application to 1000s of computing nodes within a second and remain profitable charging clients 1/10th of today's rates.

Maxim Kharchenko maxim.kharchenko@gmail.com