
THE ERICSSON SGSN-MME
-

Over a Decade of Erlang Success

Urban Boquist

Ericsson AB

2

Outline

› Mobile Telecommunications Networks
› SGSN-MME
› Erlang

› Fault Tolerance

› Capacity & Overload
› Multicore & Scalability
› Large scale software development

3

Mobile Telephony

Radio Network

Core Network
+

Circuit Switched
Old

Voice

SMS

Packet Switched
New

IP

WWW, Email, etc.

Voice-over-IP

4

3GPP Mobile Systems – GSM, W-CDMA & LTE

MS BTS BSC MSC

Telephony

Network
HLR

G-MSC

GSM

NB RNCMS

W-CDMA

eNBUE

LTE

MME

Serving GW PDN GW

HSS

IP

NetworkGGSNSGSN

GSM: 1991

GSM+GPRS: 2000

W-CDMA: 2002

LTE: 2009

5

SGSN-MME Hardware

› 3 magazine cabinet
› Each general board:

– recent Intel Xeon multicore
– lots of RAM

› Special purpose HW:
– switches, routing HW
– FPGAs
– physical interfaces

› Everything redundant

› Price: high!

6

Capacity

R1.0
R2.0

R2.1
R2.2

R3.0
R5.0

R5.5
R6.0

R7.0
R8.0

R2008B
R2009

R2010
R2011

R2012

0

2

4

6

8

10

12

SGSN-MME capacity over 12 years

M
S

A
U

7

Requirements

› Control Signalling
– Between network and Mobile Phone (MS)
– Invisible to user
– Called “Signalling”

› User Traffic
– Normal IP packets between MS and Internet
– Requested and seen by user
– Called “Payload”

8

Architecture

CP CPCPCP

PP PPPPPP

...

...

Control Plane

Payload Plane

Switch

MS Internet

soft real time

hard real time

9

Why Erlang?

› High level language
› Built-in concurrency
› Built-in distribution

› Built-in fault tolerance

› Runtime code replacement

Exactly what is needed to build a robust control plane!

10

Fault Tolerance

› ISP – In Service Performance

› SGSN-MME must never be out of service! (→ 99.9999%)

› Hardware fault tolerance (“easy”)
– Detect faulty HW

– Take it out of service

› Software fault tolerance (“hard”!)
– Many more degrees of freedom

– Not so easy to take SW out of service

11

Example SW fault
tolerance

› System principle: one Erlang process serves one MS
› SW error in SGSN-MME (“MS handling code”) leads to:

– restart of process
– all data stored for MS removed from SGSN-MME
– MS is forced to restart signalling from the beginning
– ISP effect: short service outage for this MS
– no other MS:es affected

12

Supervision

› Do not try to “handle errors”

› Crash instead!

› Offensive programming

› Error could be in MS or in SGSN-MME:
– failure to follow standard

– internal state messed up

– packet corrupt

Crash

Supervisor

Workers

{'EXIT',Reason}

Next Level

13

SW Recovery Strategy

› Restart Levels
› Escalation Hierarchy
› Kill more and more processes

› Remove more and more stored data

› Time vs. effect?

very small restart

small restart

large restart

very large restart

14

Bugs in Erlang

› If the SGSN-MME fails our customers do not care who
introduced the bug

› We must be able to handle Erlang/OTP bugs

› Same basic recovery mechanisms are used!

› Special rule for this case: “kill entire Erlang BEAM”
› SGSN-MME includes lots of “monitoring” of internal state
› Try to identify Erlang BEAMs that misbehave

15

Overload Protection

› The SGSN-MME must never “stop to respond”
› CPU load must be kept below 100% (unreliable otherwise)
› High load can be:

– user initiated
– network faults leading to excessive signalling
– denial of service attacks

› Solution: drop some packets (selectively)
› Natural in Erlang message passing paradigm!
› Difficult in practice: takes years of experience from live

networks to get right

16

Multicore & Scalability

› Erlang in theory: “scalability for free”
› In practice: not for free, but quite good
› SGSN-MME workload “one process per MS” is almost the

perfect fit!

› But very hard to avoid system level bottlenecks
– dispatcher processes
– ETS tables
– lock contention
– communication

› Multicore profiling at high load is very hard!

17

OTP R14 → R15

› HW is Intel Xeon, 8 schedulers

› Test is “SGSN-MME traffic model”
– simulating a number of MS doing “normal things”

› multicore scheduler improvements
› half word machine

› ASN.1 decoding NIF

› “nospin” patch

→
› CPU load R14: ~30%
› CPU load R15: ~20% 0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

18

Runtime code change

› Live patching is a must
› The less disturbance the better
› Erlang built in support is good but far from enough

› A whole system level strategy needs to be built on top
› Must include “operational and usability aspects”
› Procedure should be automatic – humans make mistakes!

› A single failed patching means it will be harder to convince
customer to install next patch!

19

Functional
Programming?

› SGSN-MME technical standards (GPRS) are extremely complex

› We invented lots of abstractions and design patterns

› Let programmer concentrate on GPRS – not on programming
details

› Functional parts of Erlang make this easier

› Result is a kind of “Telecom/GPRS domain specific language”
embedded within Erlang

› Works very well!

› Hard for some programmers to accept that they are not in full
control

20

Large scale
development

› Several hundred people – almost 15 years
› In the beginning many different sites – all over the world
› Now mainly on two sites

› Difficulties:
– manage the source code: lots of parallel activities
– merging and integration activities take much resources
– how to keep good quality of “very old code”?
– hard to do some fundamental changes – too much code depends
– ways of working constantly improving
– from RUP to cross functional teams and lean

21

Conclusions

› Erlang is more or less “perfect” for the control plane in a
system like this

› Erlang/OTP is very good now – many bugs historically
› Tools can be improved, eg high load profiling

› Many telecom nodes have similar requirements – few use
Erlang

› Final words:
– Erlang is fun to work with!
– How long can this amazing system continue to evolve?

	Title
	Outline
	Mobile Telephony
	3GPP Mobile Systems
	SGSN-MME Hardware
	Capacity
	Requirements
	Architecture
	Why Erlang?
	Fault Tolerance
	Example SW Fault Tolerance
	Supervision
	SW Recovery Strategy
	Bugs in Erlang
	Overload Protection
	Multicore & Scalability
	OTP R14 -> R15
	Runtime code change
	Functional programming
	Large scale development
	Conclusions
	Slide 22

