
www.m5.net
www.shoretel.com franko@m5.net | architect



Who are we?

We provide phone systems and applications with an experience that 
businesses love.



So what does that mean?

• Hosted business phone systems

• VoIP: Just a phone and an Internet connection client side

• Thousands of companies hosted on our servers

• Brilliantly simple (so marketing tells us)

• Recently acquired by Shoretel, who make premise based 
systems



Our cloud legacy platform

• C/C++ based

• Massively parallel 

• Scalable

• Robust

• Used by many tens of thousands of people concurrently



Why change?

Because its actually quite hard, and we need better tools



Really? What's so hard?

• One bad pointer can disrupt thousands of people

• Upgrades are challenging - hard to hot upgrade C. 
Downtime is bad, ok?

• Debugging stack trace for a pointer to a template class in 
gdb. Ouch.

• C threads are expensive, and synchronization challenging



Why are Linux C threads so painful for us?

• Thousands upon thousands of long lived (in weeks or 
months) busy connections, one or more per phone

• Thread per connection would be nice...

• Complex state machine, stored session data, and 
scheduler sharing few OS threads amount 10's of 
thousands of 'sessions'

• Complicated code that's easy to get wrong and difficult to 
debug



Spend most time in the details

Should really be spending most time architecting



Why Erlang?

It's supposed to be good for phones, or something. Everyone's seen the movie, 
right?



The marketing tells us...

• Stupidly parallel (more processes than atoms in universe!)

• Hot code loading

• Simple syntax, more meaningful code

• Crash isolation

• Easy to test

• More fun than Disneyland 



Framework for distribution

• Built in multi node IPC

• Startup and supervision trees

• Mnesia distributed database

• All things we'd built ourselves, but here they were more 
featured and more mature

• A language and programming paradigm designed ground 
up for robustness and stability



Did they lie?

No more than marketing usually does. We'll get to that, but first:



What we did

Read the book, write some code. Can't be that hard, can it?



First contact: TFTP project

• Australian Linux Conference, 2007

• Our first convert returns, raving (mad, we thought)

• Sounded too good to be true

• Convinced us to give it a try in an experimental project: 
TFTP server to serve up dynamic configuration

• Success, on a small scale (failures due more to TFTP 
protocol on WAN than Erlang)



PHLEM: Phone Logic Emulator

• Another test to test other stuff. Needed a tool to test the 
system as a whole - a phone emulator.

• Started with just a single process

• Half a day turned it in to hundreds of emulated phones

• Another half day to turn it in to thousands of phones 
spread across many machines.

• Erlang UDP not quite good enough; C layer via Erlang port



CTIN ('kitten') project: Client Telephony Interface

• Product folk wanted 'Business Intelligence'. The sort of 
data they wanted was not in the original core

• Hard to rework existing C core to provide the sort of detail 
we needed

• Complex logic and data analysis on unordered events: 
Easier in Erlang than C

• Erlang part only a few thousand lines 



Caller Name Lookup Project

• The start of our 'good' Erlang. Very little code, the time to 
implement was short.

• Debugged someone else's code during production 
emergency in 30 minutes. And patched.

• Lesson in supervision trees: get them right. We caused 
the whole application to shut down.

• Since the first failure; it just works.



Hosted call recording

• Major new feature for the system; lots of careful design, fast to 
implement. Focused on design and architecture; not details!

• C layer for media forking/recording

• Erlang layer for storing, retrieving encoded media via simple 
HTTP API

• Calls made up of many segments, so Erlang layer controlling 
mixing streams for recorded audio. 

• Very robust and stable. Uptime of 6 months for some modules



Everything new is now Erlang 

• New SIP redirect server (using YXA stack)

• Replaced data cache layer and db sync with Erlang 
version. Optimized, smarter version: easier to do in Erlang

• Working on new Shoretel phone support: new stack and 
user layer in Erlang, with old C core event bridge

• Enhancing testing tools



What we learned, mistakes we made

Boy, did we do a lot of both!



VM can crash

• Out of memory

• Non tail recursive loops

• Queue overflow

• Selective receive

• Consider running separate VM's for critical processes or 
'edge' applications that receive 3rd party input



Erlang as a UNIX service

• Erl -noshell -detached : always returns success!

• What happen if startup fails?

• Says admins hate this

• Log rotation: no way to catch SIGHUP

• Erld: github.com/ShoreTel-Inc/erld



Hot code loading

• It's great; but still hard

• Patchy documentation

• No good tools to help

• Doesn't integrate with package management systems 
(eg. rpm)

• Good for little things, hard for the big things



Erlang tools and libraries

• System monitoring: lots of useful tools; but take the time 
to find and learn them BEFORE you have a problem

• OTP: designed around robust behavior. Rule of thumb: if 
in doubt, use it, unless you really know better

• Dialyzer: your best friend. Really.



Databases (I know we should be using Riak, but...)

• Mnesia: great moderate sized data sets, but:

• building indexes can be very slow - startup time problem

• SQL and ODBC - a little flakey and slow



Want to know more?

Erlang in production: "I wish I'd known that when I started" - Bernard Duggan


Linux conf australia 2012

http://www.youtube.com/watch?v=G0eBDWigORY



So you want to start using Erlang?

Here's our advice



Start small

• Start with things not core to your system!

• One piece at a time: you won't convince anyone that you 
have to take a year off to rewrite the system ground up in 
a new language

• Don't try do anything critical as your first project; you've 
got too much to learn

• Erlang is easy, but building concurrent, high load, reliable 
production systems will still require care



Testing tools

• It's a natural fit

• Outside your existing code base, so easy to write and low 
risk

• Easy to write concurrent version: great for load testing!

• Great way to get other people interested



Identify small self contained modules or jobs

• Like testing tools, these are often small, and isolated from 
the rest of your system

• Cron style jobs, db cleanup/maintenance, email 
notification scripts, monitoring tools, etc

• Any task you might otherwise use a scripting language, 
consider writing in Erlang as a learning exercise

• Gradually move on to larger modules as you gain 
experience



APIs

• You've already got them - use them as a natural process 
boundary

• Erlang is good at binary pattern matching - interpret c 
structures

• Code gen - create erlang records and c structs using 
something like erlydtl

• Ports to external c apps for code too tweak-ey to rewrite



Learn!

• It's easy, but it's also a whole new world of mistakes to 
make

• Consult the mailing list - everyone is friendly

• There's actually several books now- read them; they're all 
excellent

• OTP: bite the bullet early, and learn it. It's easier than 
kicking yourself later for all that duplicated effort



Market it

• Marketing? Are you serious? "Dammit, Jim, I'm an 
engineer, not a sales drone!"

• It's more important than you realize

• Get other people excited

• You've won when the CEO asks you how that erl-wotsit is 
going 



Erlang does not absolve you of the responsibility to 
think

You can now write bad code faster than ever!



Most importantly

Have fun



One more thing...

We're recruiting. Check the flyer in your grab bag; or


www.m5.net 

www.shoretel.com

franko@m5.net


