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Who am 17

@ Senior researcher at the Swedish Institute of Computer
Science (SICS) working on programming tools and distributed
systems.

@ Used to be hard-core C programmer until introduced to
Scheme during undergraduate education.

o Started using Erlang “for real” while working in the same lab
as Joe at SICS.
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What this talk is About

An in-depth tour of the current JIT-compiling beam emulator
prototype (BEAMJIT) and the techniques used to build it.
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Just-In-Time (JIT) Compilation

@ Compile what you are about to execute to native code, at
run-time.

e Fairly common implementation technique

Python (Psyco, PyPy)

Smalltalk (Cog)

Java (HotSpot)

JavaScript (SquirrelFish Extreme, SpiderMonkey)
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JIT Strategies: When to Compile

Sub-optimal to spend time to compile and optimize code which is
only executed once.

@ Heuristics, perhaps with help from compiler

@ Run-time profiling
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JIT Strategies: What to Compile

Trade-off: Byte-code often more compact than native code.
Decide what to compile:

@ Module at a time
@ Method / function at a time

@ A trace — a single execution path
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Tracing

Use light-weight profiling to detect when we are at a place which is
frequently executed. Trace the flow of execution until we get back

to the same place.
The initial strategy selected for BEAMJIT.
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Tracing: Details

@ Assumes that the most likely execution path is the one we are
following.

@ The trace is aborted if it becomes too long.

@ When we are back to the starting point: Compile.
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HIPE vs JIT

Why would Erlang need a JIT-compiler, we already have HiPE?

@ Cross module optimization.
@ Native-code much larger than BEAM-code.

@ Tracing does not require switching to full emulation.

@ Modules are target independent, simplifies deployment:
e No need for cross compilation.

e Binaries not strongly coupled to a particular build of the
emulator.
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BEAM: Specification

@ BEAM is the name of the current VM.
@ A register machine.

@ Approximately 150 instructions which are specialized to
approximately 450 macro-instructions using a peephole
optimizer during code loading.

@ No authoritative description of the semantics of the VM
except the implementation source code!
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BEAM: Implementation

Fairly standard directly threaded code interpreter.

while (1) {
Instrx PC;

opcode_0: {
/#* Do something x/
PC += 3; /+ Skip past immediates */
goto *xxPC;

opcode_1: ...

}

Opcodes are addresses to code implementing that opcode.
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Goals

Do as little manual work as possible.

Preserve the semantics of plain BEAM.

(]

Automatically stay in sync with the plain BEAM, i.e. if bugs
are fixed in the interpreter the JIT should not have to be
modified manually.

@ Have a native code generator which is state-of-the-art.
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Plan

Our plan:
@ Parse and extract semantics from the C implementation.

@ Transform the parsed C source to C fragments which are then
reassembled into a replacement interpreter which includes a
JIT-compiler.

Compare this to other languages:
@ Python’'s PyPy
@ Smalltalk’s Cog
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Tools

@ LLVM — A Compiler Infrastructure, contains a collection of
modular and reusable compiler and toolchain technologies.
Uses a low-level assembler-like representation called IR.

@ Clang — A mostly gcc-compatible front-end for C-like
languages, produces LLVM-IR.

@ libclang — A C library built on top of Clang, allows the AST of
a parsed C-module to be accessed and traversed.
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What do we need?

A way to profile.
A way to represent the emulator source code.
A way to trace execution.

A way to convert a trace into native code.

A way to share emulator state between interpreter and native
code.

All without slowing down the interpreter too much.
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Profiling

@ Let the compiler insert profiling instructions at the head of
loops.

@ Maintain a counter and when a threshold is reached, turn on
tracing.

function, loop, 1, 2
loop(0) —> {{Ial:el,l}. ’ !
ok : {func_info ,{atom,ex}, {atom,
' loop} 1}.
loop (N) — {label 2} .
loop (N—1). Gitprofile 0}

{test ,is_eq.exact ,{f,3},
[{x,0} ,{integer ,0}]}.
{move, {atom , 0k} ,{x,0}}.
return .
{label ,3}.
{geobif , —' {f,0}.1,
[{x,0} ,{integer ,1}] ,{x,0}}

{call_only ,l,l{fv2}}-
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Example

loop (0) —
ok ;
loop(N) —

loop (N—1).

{function, loop, 1, 2}.
{label ,1}.
{func_info ,{atom,ex}, {atom, loop} 1}.
{label ,2}.
{jit_profile ,0}.

{move, {atom , ok} ,{x,0}}.
return.
{label ,3}.
{gc_bif , =" {f,0},1
[{x. 0} {lnteger 1}] {x,0}}.
{call_only ,1,{f,2}}.
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Implementation

_op_i-is_eq_exact_immed_frc: {
Instrs next = (Instr %) x(I + 2 + 1);
if (x0 I=1[(1)+1]) {
goto _op_jump_f;
}
I =2 + 1;
goto x(beam_ops[(Instr)next]);

}

_op_jump_f: {
I = ((Instr %) I[(0)+1]);
goto x(beam_ops[(Beamlnstr)«1]);

}
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Source Code Representation

Preliminary step: Parse and simplify emulator source

o Flatten variable scopes

@ No fall-troughs

@ Remove loops, replace by if+goto

@ Turn structured C into a spaghetti of Basic Blocks (BB),
CFG — Control Flow Graph.
Do liveness-analysis of variables.

_op-i-is_eq-exact_-immed_frc: { Beamlnstr xnext_125;
Instrx next = (Instr %) *(I + 2 4 1);
if (x0 !'=1[(1)+1]) { _op.i-is_.eq-exact-immed_frc:
goto _op_jump_f; jnext_125 = =(I + 3);
} if (x0 !'=1[2]) {
I =2 4+ 1; goto _Ibl_-2487;
goto *(beam_ops[(Instr)next]); } else {
} goto -lbl_429;
_op-jump_f: {
I = ((Instr %) 1[(0)+1]); _1b1.2487:
goto *(beam_ops[(Beamlnstr)xI1]); = (1)[1];

goto xbeam_ops|[x*I];

_jit_anon_lbl_429:
| += 3;
goto xbeam_ops[next_-125];

SICS



Tracing: Recording Execution Flow

Exploit that the code is split into BBs, on entry record:

e Current | (Program counter)
@ An identifier for the BB

Beamlnstr xnext_125;

_op-i-is_eq-exact_immed_frc:

jnext_125 = x(| + 3);
if (x0 !'=1[2]) {
goto _Ibl_-2487;
} else {
goto _lbl_429;
_Ib1_.2487:
L= (D)1

goto xbeam_ops|[x*I];

_jit_anon_lbl_429:
I += 3;

goto xbeam_ops[next_125];

Beamlnstr xnext_125;

_trace_op.i-is_.eq-exact_.immed_frc:

_next_125 = *(143);
if (x0 '=1[2]) {
goto _trace_lbl_2487;

} else {
goto _trace_lbl_429;

_trace_Ibl_2487:

L= (D)1
goto xbeam_ops[x*I];
-trace_lbl_429:

I += 3;
goto xbeam_ops[next_125];
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Tracing: Enabling/Disabling Tracing

@ Generate two implementations of each opcode, a plain and a
tracing version.

@ Make the interpreter indirectly threaded.

while (1) { while (1) {

Instr*x PC; Instr*x PC;
opcode_0: { opcode_0: {
/* Do something =x/ /* Do something x/
PC += 3; /+ Skip past PC += 3; /x Skip past
immediates */ immediates */
¥ ¥
opcode_1: ... opcode_1: ...
}

@ Switching implementation is just a matter of changing ops.
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Tracing: Trace representation

Currently naive:
@ One ongoing trace per process.
@ Fixed maximum length.

@ Only one ongoing trace starting from the same profiling
instruction.

o Large potential for improvement.
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Code Generation: Introduction

@ Use LLVM's optimizer and native code generator.
@ LLVM understands LLVM-IR, we have C.

@ Do not want to implement a C-compiler — Generate stubs
which are then compiled to IR using Clang.

@ JIT code generator reads IR during initialization and extracts
relevant parts from the stubs.

@ Trace is traversed and stub fragments are glued together, to a
function implementing the trace.

@ The function is then optimized and compiled to native code
using LLVM.
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Code Generation: Stubs

@ Stubs return the value of the conditional (for conditional
branches), or the new | (for opcode dispatch).

Beamlnstr xnext_125; int op-i-is_eq_exact_immed_frc(void)
_op-i-is_eq-exact_-immed_frc: Beamlnstr x| ;
jnext_125 = x(| + 3); Beamlnstr xnext_125;
if (x0 !'=1[2]) { Eterm x0;
goto _Ibl_2487;
} else { next_125 = x(1 + 3);
goto _lbl_429; return (x0 !'= I1[2]) != 0;
} }
_Ib1.2487: void *1bl_2487 (void)
I =1[1]; {
goto xbeam_ops[x*I]; Beamlinstr x1;
I = 1[1];
_jit_anon_lbl_429: return (voidx)xl;
I += 3; }

goto xbeam_ops[next_125];
void *Ibl_429 (void)
{
Beamlnstr x1;
Beamlnstr sxnext_125;
I 4= 3;
return (void=*)next_125;
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Code Generation: Resulting Function

When two BBs are linked to each other through a conditional
branch:
@ Insert conditional that checks that we still are on the
fast-path.
@ If we are on the slow path, return which BB execution should
continue from.

int trace_fun(void)

Beamlnstr *1;
Beamlnstr xnext_125;

Eterm x0;
start:
next_125 = *(1 + 3);
if ((x0 !=1[2]) = 0)
return 2487; /x BB x/
I += 3;
if (I[next-125] != trace[index+1].1)

return next_125; /x Opcode, The index of an opcode and the first BB in its
implementation overlap */

/* N— 1 etc =/

goto start;

Shown as C, actually done on IR. SIGS



Code Generation: Optimizations

@ Insert a i=wacefindex] .1; at the start of each opcode stub.  (future

work)
@ Teach LLVM-optimizer that anything accessed via I is a
compile-time constant. (future work)

int trace_fun(void) int trace_fun(void)

Beamlnstr *1; Eterm x0;
Beamlnstr xnext_125;
Eterm x0; start:
if (x0 !'=0)
start: return 2487; /+ BB x/
next_125 = *(1 + 3);
if ((x0 !=1[2]) !=0) /x N — 1 etc */
return 2487; /+ BB x/
| += 3; goto start;
if (I[next.125] != trace[index+1].1)

return next-125;
/* N — 1 etc */

goto start;
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Executing Native Code

@ Interpreter keeps much of its state in local variables.
@ Need a way to pass that state to the native code.

@ Collecting state into a shared C-struct would be simple, but
not efficient.

@ Solution is to copy the state into a buffer which is used to
initialize the locals in the native code.

@ Do the opposite when we fall off the fast path.

@ Use liveness information to avoid copying data we do not
need.

@ Generated from source.
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Current Status

First working version a week ago today.
Only unicore.

Naive tracing.

Traces are never GC:d.

Lacking optimizations.

Conservative liveness analysis.

Too early to get any performance figures.
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Future Work

Implement JIT-specific optimizations.
Manage traces and compiled native code.
Improve liveness analysis.

Integrate with code update.

Performance evaluation.

SMP-support.

Extend JIT:ing to BIFs.
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Just-in-time in No Time? " Use the Source!”

Questions?
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