Just-in-time in No Time? " Use the Source!”

How to distill a JIT compiler from an interpreter

Frej Drejhammar
<frej@sics.se>

120529

SICS

Who am 17

@ Senior researcher at the Swedish Institute of Computer
Science (SICS) working on programming tools and distributed
systems.

@ Used to be hard-core C programmer until introduced to
Scheme during undergraduate education.

o Started using Erlang “for real” while working in the same lab
as Joe at SICS.

SICS

What this talk is About

An in-depth tour of the current JIT-compiling beam emulator
prototype (BEAMJIT) and the techniques used to build it.

SICS

Outline Background

Just-In-Time Compilation
JIT Strategies
Tracing JIT
HiPE vs JIT
The BEAM Emulator
BEAM: Specification & Implementation
The BEAM JIT Prototype
Overview
Tools
Running Example
Source Code Representation
Profiling
Tracing
Code Generation
Executing Native Code
Current Status
Future Work

QA SICS

Just-In-Time (JIT) Compilation

@ Compile what you are about to execute to native code, at
run-time.

e Fairly common implementation technique

Python (Psyco, PyPy)

Smalltalk (Cog)

Java (HotSpot)

JavaScript (SquirrelFish Extreme, SpiderMonkey)

SICS

JIT Strategies: When to Compile

Sub-optimal to spend time to compile and optimize code which is
only executed once.

@ Heuristics, perhaps with help from compiler

@ Run-time profiling

SICS

JIT Strategies: What to Compile

Trade-off: Byte-code often more compact than native code.
Decide what to compile:

@ Module at a time
@ Method / function at a time

@ A trace — a single execution path

SICS

Tracing

Use light-weight profiling to detect when we are at a place which is
frequently executed. Trace the flow of execution until we get back

to the same place.
The initial strategy selected for BEAMJIT.

SICS

Tracing: Details

@ Assumes that the most likely execution path is the one we are
following.

@ The trace is aborted if it becomes too long.

@ When we are back to the starting point: Compile.

SICS

HIPE vs JIT

Why would Erlang need a JIT-compiler, we already have HiPE?

@ Cross module optimization.
@ Native-code much larger than BEAM-code.

@ Tracing does not require switching to full emulation.

@ Modules are target independent, simplifies deployment:
e No need for cross compilation.

e Binaries not strongly coupled to a particular build of the
emulator.

SICS

Outline

The BEAM Emulator
BEAM: Specification & Implementation

SICS

BEAM: Specification

@ BEAM is the name of the current VM.
@ A register machine.

@ Approximately 150 instructions which are specialized to
approximately 450 macro-instructions using a peephole
optimizer during code loading.

@ No authoritative description of the semantics of the VM
except the implementation source code!

SICS

BEAM: Implementation

Fairly standard directly threaded code interpreter.

while (1) {
Instrx PC;

opcode_0: {
/#* Do something x/
PC += 3; /+ Skip past immediates */
goto *xxPC;

opcode_1: ...

}

Opcodes are addresses to code implementing that opcode.

SICS

Outline

The BEAM JIT Prototype
Overview
Tools
Running Example
Source Code Representation
Profiling
Tracing
Code Generation
Executing Native Code
Current Status
Future Work

SICS

Goals

Do as little manual work as possible.

Preserve the semantics of plain BEAM.

(]

Automatically stay in sync with the plain BEAM, i.e. if bugs
are fixed in the interpreter the JIT should not have to be
modified manually.

@ Have a native code generator which is state-of-the-art.

SICS

Plan

Our plan:
@ Parse and extract semantics from the C implementation.

@ Transform the parsed C source to C fragments which are then
reassembled into a replacement interpreter which includes a
JIT-compiler.

Compare this to other languages:
@ Python’'s PyPy
@ Smalltalk’s Cog

SICS

Tools

@ LLVM — A Compiler Infrastructure, contains a collection of
modular and reusable compiler and toolchain technologies.
Uses a low-level assembler-like representation called IR.

@ Clang — A mostly gcc-compatible front-end for C-like
languages, produces LLVM-IR.

@ libclang — A C library built on top of Clang, allows the AST of
a parsed C-module to be accessed and traversed.

SICS

What do we need?

A way to profile.
A way to represent the emulator source code.
A way to trace execution.

A way to convert a trace into native code.

A way to share emulator state between interpreter and native
code.

All without slowing down the interpreter too much.

SICS

Profiling

@ Let the compiler insert profiling instructions at the head of
loops.

@ Maintain a counter and when a threshold is reached, turn on
tracing.

function, loop, 1, 2
loop(0) —> {{Ial:el,l}. ’ !
ok : {func_info ,{atom,ex}, {atom,
' loop} 1}.
loop (N) — {label 2} .
loop (N—1). Gitprofile 0}

{test ,is_eq.exact ,{f,3},
[{x,0} ,{integer ,0}]}.
{move, {atom , 0k} ,{x,0}}.
return .
{label ,3}.
{geobif , —' {f,0}.1,
[{x,0} ,{integer ,1}] ,{x,0}}

{call_only ,l,l{fv2}}-

SICS

Example

loop (0) —
ok ;
loop(N) —

loop (N—1).

{function, loop, 1, 2}.
{label ,1}.
{func_info ,{atom,ex}, {atom, loop} 1}.
{label ,2}.
{jit_profile ,0}.

{move, {atom , ok} ,{x,0}}.
return.
{label ,3}.
{gc_bif , =" {f,0},1
[{x. 0} {lnteger 1}] {x,0}}.
{call_only ,1,{f,2}}.

SICS

Implementation

_op_i-is_eq_exact_immed_frc: {
Instrs next = (Instr %) x(I + 2 + 1);
if (x0 I=1[(1)+1]) {
goto _op_jump_f;
}
I =2 + 1;
goto x(beam_ops[(Instr)next]);

}

_op_jump_f: {
I = ((Instr %) I[(0)+1]);
goto x(beam_ops[(Beamlnstr)«1]);

}

SICS

Source Code Representation

Preliminary step: Parse and simplify emulator source

o Flatten variable scopes

@ No fall-troughs

@ Remove loops, replace by if+goto

@ Turn structured C into a spaghetti of Basic Blocks (BB),
CFG — Control Flow Graph.
Do liveness-analysis of variables.

_op-i-is_eq-exact_-immed_frc: { Beamlnstr xnext_125;
Instrx next = (Instr %) *(I + 2 4 1);
if (x0 !'=1[(1)+1]) { _op.i-is_.eq-exact-immed_frc:
goto _op_jump_f; jnext_125 = =(I + 3);
} if (x0 !'=1[2]) {
I =2 4+ 1; goto _Ibl_-2487;
goto *(beam_ops[(Instr)next]); } else {
} goto -lbl_429;
_op-jump_f: {
I = ((Instr %) 1[(0)+1]); _1b1.2487:
goto *(beam_ops[(Beamlnstr)xI1]); = (1)[1];

goto xbeam_ops|[x*I];

_jit_anon_lbl_429:
| += 3;
goto xbeam_ops[next_-125];

SICS

Tracing: Recording Execution Flow

Exploit that the code is split into BBs, on entry record:

e Current | (Program counter)
@ An identifier for the BB

Beamlnstr xnext_125;

_op-i-is_eq-exact_immed_frc:

jnext_125 = x(| + 3);
if (x0 !'=1[2]) {
goto _Ibl_-2487;
} else {
goto _lbl_429;
Ib1.2487:
L= (D)1

goto xbeam_ops|[x*I];

_jit_anon_lbl_429:
I += 3;

goto xbeam_ops[next_125];

Beamlnstr xnext_125;

_trace_op.i-is_.eq-exact_.immed_frc:

_next_125 = *(143);
if (x0 '=1[2]) {
goto _trace_lbl_2487;

} else {
goto _trace_lbl_429;

_trace_Ibl_2487:

L= (D)1
goto xbeam_ops[x*I];
-trace_lbl_429:

I += 3;
goto xbeam_ops[next_125];

SICS

Tracing: Enabling/Disabling Tracing

@ Generate two implementations of each opcode, a plain and a
tracing version.

@ Make the interpreter indirectly threaded.

while (1) { while (1) {

Instr*x PC; Instr*x PC;
opcode_0: { opcode_0: {
/* Do something =x/ /* Do something x/
PC += 3; /+ Skip past PC += 3; /x Skip past
immediates */ immediates */
¥ ¥
opcode_1: ... opcode_1: ...
}

@ Switching implementation is just a matter of changing ops.

SICS

@ Surprisingly small effect on performance.

Tracing: Trace representation

Currently naive:
@ One ongoing trace per process.
@ Fixed maximum length.

@ Only one ongoing trace starting from the same profiling
instruction.

o Large potential for improvement.

SICS

Code Generation: Introduction

@ Use LLVM's optimizer and native code generator.
@ LLVM understands LLVM-IR, we have C.

@ Do not want to implement a C-compiler — Generate stubs
which are then compiled to IR using Clang.

@ JIT code generator reads IR during initialization and extracts
relevant parts from the stubs.

@ Trace is traversed and stub fragments are glued together, to a
function implementing the trace.

@ The function is then optimized and compiled to native code
using LLVM.

SICS

Code Generation: Stubs

@ Stubs return the value of the conditional (for conditional
branches), or the new | (for opcode dispatch).

Beamlnstr xnext_125; int op-i-is_eq_exact_immed_frc(void)
_op-i-is_eq-exact_-immed_frc: Beamlnstr x| ;
jnext_125 = x(| + 3); Beamlnstr xnext_125;
if (x0 !'=1[2]) { Eterm x0;
goto _Ibl_2487;
} else { next_125 = x(1 + 3);
goto _lbl_429; return (x0 !'= I1[2]) != 0;
} }
_Ib1.2487: void *1bl_2487 (void)
I =1[1]; {
goto xbeam_ops[x*I]; Beamlinstr x1;
I = 1[1];
_jit_anon_lbl_429: return (voidx)xl;
I += 3; }

goto xbeam_ops[next_125];
void *Ibl_429 (void)
{
Beamlnstr x1;
Beamlnstr sxnext_125;
I 4= 3;
return (void=*)next_125;

SICS

Code Generation: Resulting Function

When two BBs are linked to each other through a conditional
branch:
@ Insert conditional that checks that we still are on the
fast-path.
@ If we are on the slow path, return which BB execution should
continue from.

int trace_fun(void)

Beamlnstr *1;
Beamlnstr xnext_125;

Eterm x0;
start:
next_125 = *(1 + 3);
if ((x0 !=1[2]) = 0)
return 2487; /x BB x/
I += 3;
if (I[next-125] != trace[index+1].1)

return next_125; /x Opcode, The index of an opcode and the first BB in its
implementation overlap */

/* N— 1 etc =/

goto start;

Shown as C, actually done on IR. SIGS

Code Generation: Optimizations

@ Insert a i=wacefindex] .1; at the start of each opcode stub. (future

work)
@ Teach LLVM-optimizer that anything accessed via I is a
compile-time constant. (future work)

int trace_fun(void) int trace_fun(void)

Beamlnstr *1; Eterm x0;
Beamlnstr xnext_125;
Eterm x0; start:
if (x0 !'=0)
start: return 2487; /+ BB x/
next_125 = *(1 + 3);
if ((x0 !=1[2]) !=0) /x N — 1 etc */
return 2487; /+ BB x/
| += 3; goto start;
if (I[next.125] != trace[index+1].1)

return next-125;
/* N — 1 etc */

goto start;

SICS

Executing Native Code

@ Interpreter keeps much of its state in local variables.
@ Need a way to pass that state to the native code.

@ Collecting state into a shared C-struct would be simple, but
not efficient.

@ Solution is to copy the state into a buffer which is used to
initialize the locals in the native code.

@ Do the opposite when we fall off the fast path.

@ Use liveness information to avoid copying data we do not
need.

@ Generated from source.

SICS

Current Status

First working version a week ago today.
Only unicore.

Naive tracing.

Traces are never GC:d.

Lacking optimizations.

Conservative liveness analysis.

Too early to get any performance figures.

SICS

Future Work

Implement JIT-specific optimizations.
Manage traces and compiled native code.
Improve liveness analysis.

Integrate with code update.

Performance evaluation.

SMP-support.

Extend JIT:ing to BIFs.

SICS

Outline

QA SICS

Acknowledgments

@ Ericsson — For funding the project and letting me do a cool
hack as (part of) my job.

@ Jonas Sjobergh — For the title of the talk.

SICS

Just-in-time in No Time? " Use the Source!”

Questions?

SICS

	Main Part
	Background
	Just-In-Time Compilation
	JIT Strategies
	Tracing JIT
	HiPE vs JIT

	The BEAM Emulator
	BEAM: Specification & Implementation

	The BEAM JIT Prototype
	Overview
	Tools
	Running Example
	Source Code Representation
	Profiling
	Tracing
	Code Generation
	Executing Native Code
	Current Status
	Future Work

	Q&A

