
distel
the first ten years

mats cronqvist
masse@klarna.com

this talk

●editing code
●emacs
●erlang in emacs
●distel

how we write code - 40's

ENIAC programmers, 1945 (U.S. Army)

how we write code - 50s

how we write code - 60s

interactive line editors.
●TECO (1963)
●QED (1965)

*SHello$0TT$$ Search for "Hello" and print the line printf("Hello
world!\n"); The line *-5DIGoodbye$0TT$$ Delete "Hello", insert
"Goodbye", and print the line printf("Goodbye world!\n"); The
updated line

how we write code -70s

Visual editors
●vi (1976)
●emacs (1976)

how we write code - 90s

Visual Studio (1995)

● code editor supporting IntelliSense
● code refactoring.
● integrated debugger works both as a source-level debugger and a

machine-level debugger.
● forms designer for building GUIapplications,
● web designer,
● class designer
● database schema designer
● source-control systems (like Subversion and Visual SourceSafe)

http://en.wikipedia.org/wiki/Code_editor
http://en.wikipedia.org/wiki/IntelliSense
http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio_Debugger
http://en.wikipedia.org/wiki/GUI
http://en.wikipedia.org/wiki/Web_designer
http://en.wikipedia.org/wiki/Class_(computing)
http://en.wikipedia.org/wiki/Database_schema
http://en.wikipedia.org/wiki/Source_control
http://en.wikipedia.org/wiki/Subversion_(software)
http://en.wikipedia.org/wiki/Visual_SourceSafe

how we write code

by editing test in files.
nothing's changed since card punches
disappeared.

Stevey on IDEs

People in the industry are very excited
about[ideas]such as IDEs that can
manipulate code as "algebraic structures",
and search indexes, and so on.
These people tend to view code bases much
the way construction workers view dirt:
they want great big machines that can move
the dirt this way and that.

http://steve-yegge.blogspot.se/2007/12/codes-worst-enemy.html

future?

Not much has happened since mid-80s.
● �Inventing on Principle - Bret Victor
● Light Table - Chris Granger

"Light Table is based on a very simple idea: we need a real
work surface to code on, not just an editor and a project
explorer. We need to be able to move things around, keep
clutter down, and bring information to the foreground in the
places we need it most."

[http://vimeo.com/36579366]
[http://www.chris-granger.com/2012/05/21/the-future-is-specific]

editing erlang

●eclipse
●vim
●emacs

○ the preferred tool of the original Erlang crew
○ has a comprehensive erlang mode
○ defines the canonical indentation

erlang in emacs

● erlang mode (Anders Lindgren, ca. 1995)
○ syntax highlighting
○ navigation
○ indentation
○ compilation
○ inferior shell
○ ...

emacs is extensible
(if (file-exists-p "Makefile")
 "make -k"
 (concat
 "erlc "
 (if (file-exists-p "../ebin") "-o ../ebin " "")
 (if (file-exists-p "../inc") "-I ../inc " "")
 "+debug_info -W "
 buffer-file-name))

trivial emacs extensibility

E.g., it is possible to implement the Erlang
Distribution on top of it.
Thats's what
this fine
looking feller
did back in
2002.
Luke Gorrie.

non-trivial emacs extensibility

"Distel is an Emacs-based user-interface toolkit for
Erlang. We introduce “Emacs nodes” using the
Erlang inter-node distribution protocol, and make
communication natural by extending Emacs Lisp
with Erlang’s concurrent programming model."

"[The] features we selected are processes,
pattern matching, and distribution, and they are
reproduced faithfully at a high level, though many
details differ."

highly ambitious

(defun spawn-counter ()
 (erl-spawn
 (erl-register ’counter)
 (&counter-loop 1)))

(defun &counter-loop (count)
 (erl-receive (count)
 ((msg (message "Got msg #%S: %S"
 count msg)))
 (&counter-loop (+ count 1))))

distel example

"Most importantly, erl-receive never returns.
Instead it bundles up the execution state and
throw’s it directly back up to a scheduler loop,
bypassing any code on the stack."

"Because erl-receive doesn’t return, and nor
do functions that call it, they should only be
tail-called – called as the last thing a function
does."

continuation-passing

Distel is a bit old. And tends to get attention only in
the areas that are used by highly motivated hackers.

● Has problems on MacOS.
● Probably doesn't work at all on Windows.
● Some bits are virtually never used, and rotted.

...but some bits work very well.

caveats

erl-reload-module (C-d C-d L)
Reload an Erlang module, given by name in the
minibuffer.

erl-reload-modules (C-c C-d r)
Reload all modules that are out of date.

erl-find-doc (C-c C-d z)
Show the signature of the function under point.
file:read_file_info(Filename) -> {ok, FileInfo} | {error, Reason}

handy

Dynamic “TAGS”

"Distel includes a small source code cross referencer
for Erlang. The basic feature is to jump from a
function call in a program to the definition of that
function."
erl-find-source-under-point (M-.)erl-
find-source-unwind (M-,)

hither and yon

Interactive Sessions

"An Interactive Session buffer is to Erlang as the
scratch buffer is to Emacs Lisp – a scratchpad
where code snippets can be hacked and executed."

scribbles

Debugger

"An Erlang debugger interface, called edb, is
also included with Distel. This uses the same
interpreter-based back-end as the OTP debugger
application, but replaces the Tk-based front-
end with an Emacs interface."

squash

https://massemanet@github.com/massemanet/distel.git

outro

distel-ie

distel-edb

