An Erlang-based Framework

for the Automatic Testing of
Web Services

Kostis Sagonas
joint work with

Leonidas Lampropoulos

Overview

* Property-based Testing using PropEr
— Short demo
* “Traditional” Testing of Web Services

* Testing of Web Services using Erlang
— Based on PropEr, xmerl, and Yaws

* Automatic Response Testing of Web Services
— Demo

* Property-based Testing of Web Services
— Short demo

* Future Work

Kostis Sagonas PropEr Testing of Web Services

Property-based testing

* Basic idea:

Kostis Sagonas

express the properties that a program must
satisfy in the form of input-output relations

try to find counter-examples for the
property

... by automatically generating
progressively more involved random test
cases

... based on a general description of the
structure of the tests

PropEr Testing of Web Services

A Property-based Testing Tool for Erlang

* Freely available as open source
http://proper.softlab.ntua.gr
* Provides support for

— Writing properties and test case generators
— Concurrent/parallel “statem” and “fsm” testing

* Full integration with the language of types and
function specifications

— Generators often come for free!

Kostis Sagonas PropEr Testing of Web Services

Testing simple properties (1)

-module (simple props) .

%% Properties are automatically exported.
-include lib ("proper/include/proper.hrl").

%% Functions that start with prop are considered properties
prop t2b b2t () ->
?FORALL (T, term(), T =:= binary to term(term to binary(T))).

1> c(simple props) .
{ok,simple props}
2> proper:quickcheck (simple props:prop t2b b2t()).

OK: Passed 100 test(s)
true

Kostis Sagonas PropEr Testing of Web Services

Testing simple properties (2)

%% Testing the base64 module:
3% encode should be symmetric to decode:

prop _enc dec() ->
?FORALL (Msg, union([binary(), list(range(1,255))]),
begin
EncDecMsg = base64:decode (base64:encode (Msqg)),
case 1is binary (Msg) of

true -> EncDecMsg =:= Msg;
false -> EncDecMsg =:= list to binary (Msg)
end
end) .

Kostis Sagonas PropEr Testing of Web Services

PropEr integration with simple types

%% Using a user-defined simple type as a generator
-type bl() :: binary() | [1l..255].

prop _enc dec() ->
?FORALL (Msg, bl(),
begin
EncDecMsg = base64:decode (base64:encode (Msqg)),
case 1is binary (Msg) of

true -> EncDecMsg =:= Msg;
false -> EncDecMsg =:= list to binary (Msg)
end
end) .

Kostis Sagonas PropEr Testing of Web Services

PropEr shrinking

%% A lists delete implementation
-spec delete (T, 1list(T)) -> 1list(T).
delete (X, L) ->

delete (X, L, []).

delete(, [], Acc) ->
lists:reverse (Acc) ;

delete (X, [X|Rest], Acc) ->
lists:reverse (Acc) ++ Rest;

delete (X, [Y|Rest], Acc) ->
delete (X, Rest, [Y|Acc]).

prop delete() ->
?FORALL ({X,L}, {integer(),list(integer())},
not lists:member (X, delete (X, L)))

Kostis Sagonas PropEr Testing of Web Services

PropEr shrinking

41> c(simple props) .
{ok,simple props}
42> proper:quickcheck (simple props:prop delete()) .

Failed: After 42 test(s).
{12,[-36,-1,-2,7,19,-14,40,-6,-8,42,-8,12,12,-17,3]}

Shrinking ... (3 time(s))

{12,[12,12]}
false

Kostis Sagonas PropEr Testing of Web Services

PropEr integration with types

-type tree(T) :: 'leaf' | {'node',fT,tree(T), tree(T)}.

%% A tree delete implementation
-spec delete (T, tree(T)) -> tree(T).
delete (X, leaf) ->

leaf;
delete (X, {node,X,L,R}) -> join(leaf, T) -> T;
join(L, R); join({node,X,L,R}, T) ->

delete (X, {node,Y,L,R}) -> {node X Jorni(Li-RN,TY:

{node,Y,delete(X,L) ,delete(X,R)}.

prop delete() ->
?FORALL ({X,L}, {integer (), tree(integer())},
not lists:member (X, delete(X, L)))

Kostis Sagonas PropEr Testing of Web Services

Integration with recursive types

41> c(mytrees).
{ok ,mytrees}
42> proper:quickcheck (mytrees:prop delete()).
Failed: After 24 test(s).
{6, {node, 19, {node,-19,1leaf,leaf},
{node, 6,leaf, {node, 6,leaf,leaf}}}}

Shrinking . (1 time(s))

{6, {node, 6,1leaf, {node, 6,leaf,leaf}}}
false

Kostis Sagonas PropEr Testing of Web Services

Traditional testing of web services

Similar to other forms of software testing:
* Aquire valid input

— User provides this
(following the WSDL specification)

* Invoke operation

— Automatically
(using some existing framework, e.g. Yaws)

* Examine output

— User checks this

Kostis Sagonas PropEr Testing of Web Services

PropEr testing of web services

Mostly automatic — goes as follows:
* Aquire valid input

— Automatic using some PropEr generator
(following the WSDL specification)

* Invoke operation

— Automatically
(using Yaws)

* Examine output

— Automatic (for response testing)

— Semi-automatic by writing some PropEr property
(for property-based testing)

Kostis Sagonas PropEr Testing of Web Services

PropEr testing of web services

W etURI

— Types xmer|

h. .
5 W | o S
Operations -

2 S Test | g L-p
R D Y User
V SOAP A Data
| I. Test(s) W ’ Generation

L
‘ J S » Propkr
£ response(s)

Kostis Sagonas PropEr Testing of Web Services

WSDL specification

A WSDL specification contains all the necessary
information to invoke an operation

— Ports

— Bindings

— Messages

— Parts

— Most importantly (for us): Types!

Kostis Sagonas PropEr Testing of Web Services

WSDL types

* Included in a <types> XML tag
* Simple primitives
— 1int, long, string, boolean,
* Aggregates
— list, union
* Complex types
— sequence, choice,

* Enumerations

Kostis Sagonas PropEr Testing of Web Services

A <types> example www.webservicex.net)

<s:element name="ChangeCookingUnit">

tar espace="http://www.webserviceX.NET/">
<s:element name="ChangeCookingUnit">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="CookingValue" type="s:double"/>
<s:element minOccurs="1" maxOccurs="1" name="fromCookingUnit" type="tns:Cookings"/>
<s:element minOccurs="1" maxOccurs="1" name="toCookingUnit” type="tns:Cookings"/>
</s:sequence>
</s:complexType>
</s:element>
<s:simpleType name="Cookings">
<s:restriction base="s:string">
<s:enumeration value="drop"/>
<s:enumeration value="dash"/>

<s:enumeration value="pinch”/>
<s:enumeration value="TenCan"/>
</s:restriction>
</s:simpleType>
</s:schema>
</wsdl:types>

Kostis Sagonas PropEr Testing of Web Services

A <types> example explained (1)

The "Cookings" simple type:
<s:restiction base="s:string">

IS a restriction of the primitive type string

<s:enumeration value="drop"/>

adds a value to the enumeration

Kostis Sagonas PropEr Testing of Web Services

A <types> example explained (2)

The "ChangeCookingUnit" complex type:

<s:sequence>

IS a sequence of the nested elements

<s:element minOccurs="1" maxOccurs="1"
name="CookingValue" type="s:double"/>

adds a field "CookingValue" of type double
that appears exactly once

Kostis Sagonas PropEr Testing of Web Services

Invoking web services with Yaws

yaws soap lib:call (WSDL uri, Op, Args)

The Args argument can become really complex

Yaws needs most arguments converted to
strings — but not all!

For large WSDL specifications, writing the input
by hand is error-prone

Kostis Sagonas PropEr Testing of Web Services

Automatic creation of generators

* Parse the WSDL specification

* Extract all type information

* Break types into primitives

* Handle Yaws string conversions

* Output Yaws records as a .hrl file
* Qutput PropEr generators!

Kostis Sagonas PropEr Testing of Web Services

Generators for the cooking example

generate ChangeCookingUnit 1 CookingValue() ->
?LET(Gen, float(), float to list(Gen)).

generate ChangeCookingUnit 1 fromCookingUnit Cookings() ->
elements (["drop","dash","pinch",...,"TenCan"]).

generate ChangeCookingUnit 1 toCookingUnit Cookings() ->
elements (["drop","dash","pinch",...,"TenCan"]).

generate ChangeCookingUnit 1() ->

?LET ({Pr_ChangeCookingUnit 1 CookingValue,
Pr ChangeCookingUnit 1 fromCookingUnit Cookings,
Pr ChangeCookingUnit 1 toCookingUnit Cookings},
{generate ChangeCookingUnit 1 CookingValue(),
generate ChangeCookingUnit 1 fromCookingUnit Cookings(),
generate ChangeCookingUnit 1 toCookingUnit Cookings()},
[Pr_ChangeCookingUnit 1 CookingValue,
Pr ChangeCookingUnit 1 fromCookingUnit Cookings,
Pr ChangeCookingUnit 1 toCookingUnit Cookings]).

Kostis Sagonas PropEr Testing of Web Services

Automatic response testing

* When an error occurs (server error, exceptions,
out-of-bounds, etc.) a SOAP fault message is
returned

* Conservatively accept every other response

* |n this case the property creation is fully
automatic

Kostis Sagonas PropEr Testing of Web Services

Property for the cooking example

prop ChangeCookingUnit responds() ->
?FORALL (Args, generate ChangeCookingUnit 1(),
case call ChangeCookingUnit (Args) of
{ok, Attribs, [#'soap:Fault'{}]} -> false;
{ok, Attribs, Result record} -> true;
__ => false
end).

Kostis Sagonas PropEr Testing of Web Services

Property-based testing of web services

* Use the tool to create a file with generators and
properties

* Can use the created generators “as is”

* Simple to change them in order to refine them or
add semantic information

* Can use the property with for response testing as
our guide

Kostis Sagonas PropEr Testing of Web Services

Web service with delete example

-module (myDelete).
-export ([handler/4]).

-include ("myDelete.hrl"”). % .hrl file generated by erlsom

handler (Header, [#'p:delete’'{'list'=List,'x' = X}],
_Action, SessionValue) ->
{ok, undefined, get response(List, X)}.

delete (X, L) -> delete(X, L, []).

delete(_, [], Acc) -> lists:reverse(Acc);

delete(X, [X|Rest], Acc) -> lists:reverse(Acc) ++ Rest;
delete(X, [Y|Rest], Acc) -> delete(X, Rest, [Y|Acc]).
get response(List, X) ->

[#'p:deleteResponse’' {anyAttribs = [],
deleteReturn = delete(X,List)}].

Kostis Sagonas PropEr Testing of Web Services

Automatic response test for delete

generate delete 1 list() ->
?LET(Len, range(l, inf),
vector (Len, integer(-2147483648, 2147483647))).

generate delete 1 x() ->
integer(-2147483648, 2147483647).

generate delete 1() ->
?LET({Pr_delete 1 list, Pr _delete 1 x},
{generate delete 1 list(), generate delete 1 x()},
[Pr_delete 1 list, Pr delete 1 x]).

prop delete responds() ->
?FORALL (Args, generate delete 1(),
case call delete(Args) of
{ok, Attribs, [#'soap:Fault'{}]} -> false;
{ok, Attribs, Result record} -> true;
_ => false
end).

Kostis Sagonas PropEr Testing of Web Services

Semi-automatic property testing

prop delete responds() ->
?FORALL([L, X] = Args, generate delete 1(),
case call delete(Args) of
{ok, Attribs, [#'soap:Fault'{}]} -> false;
{ok, _Attribs,
[#'p:deleteResponse’ {
deleteReturn = undefined}]} -> true;
{ok, Attribs,
[#'p:deleteResponse’ {
deleteReturn = RetList}]} ->
not lists:member (X, RetList);
__ => false
end) .

Kostis Sagonas PropEr Testing of Web Services

Property-based testing

1> proper ws:generate (" p
"proper ws myDelete").

ok
2> c(proper ws myDelete).
{ok,proper ws myDelete}
3> proper:quickcheck (

proper ws myDelete:prop delete removes every x()).
Failed: After 42 test(s).
{[27,-86,-42,-14,90,10,-4,-32,8,44,4,-23,16,-42] ,-42}

Shrinking (10 time(s))

{[0,0],0}
false

Kostis Sagonas PropEr Testing of Web Services

smb://tmp/myDelete.wsdl

More info on our PropEr website

|. PropEr

« » ¢ oproper.softlab.ntua.g

PropkEr

3 YouTube O3 (1 other Bookmarks

A QuickCheck-Inspired Property-Based Testing Tool for Erlang

\WET N About APl Download FAQ Publications Tips Tutorials

Contents

About: The PropEr developers

APIl: The PropEr API and its documentation

Download: With PropEr instructions on how to do this
FAQ: Frequently Asked Questions with PropEr Answers
Publications: PropEr papers and talks

Tips: For the effective use of PropEr

Tutorials: Showing the tool's PropEr use

Last edited on 2011-06-07.

Kostis Sagonas PropEr Testing of Web Services

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

