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Overview

* Property-based Testing using PropEr
— Short demo
* “Traditional” Testing of Web Services

* Testing of Web Services using Erlang
— Based on PropEr, xmerl, and Yaws

* Automatic Response Testing of Web Services
— Demo

* Property-based Testing of Web Services
— Short demo

* Future Work
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Property-based testing

* Basic idea:

Kostis Sagonas

express the properties that a program must
satisfy in the form of input-output relations

try to find counter-examples for the
property

... by automatically generating
progressively more involved random test
cases

... based on a general description of the
structure of the tests
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A Property-based Testing Tool for Erlang

* Freely available as open source
http://proper.softlab.ntua.gr
* Provides support for

— Writing properties and test case generators
— Concurrent/parallel “statem” and “fsm” testing

* Full integration with the language of types and
function specifications

— Generators often come for free!
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Testing simple properties (1)

-module (simple props) .

%% Properties are automatically exported.
-include lib ("proper/include/proper.hrl").

%% Functions that start with prop are considered properties
prop t2b b2t () ->
?FORALL (T, term(), T =:= binary to term(term to binary(T))).

1> c(simple props) .
{ok,simple props}
2> proper:quickcheck (simple props:prop t2b b2t()).

OK: Passed 100 test(s)
true
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Testing simple properties (2)

%% Testing the base64 module:
3% encode should be symmetric to decode:

prop _enc dec() ->
?FORALL (Msg, union([binary(), list(range(1,255))]),
begin
EncDecMsg = base64:decode (base64:encode (Msqg)),
case 1is binary (Msg) of

true -> EncDecMsg =:= Msg;
false -> EncDecMsg =:= list to binary (Msg)
end
end) .
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PropEr integration with simple types

%% Using a user-defined simple type as a generator
-type bl() :: binary() | [1l..255].

prop _enc dec() ->
?FORALL (Msg, bl(),
begin
EncDecMsg = base64:decode (base64:encode (Msqg)),
case 1is binary (Msg) of

true -> EncDecMsg =:= Msg;
false -> EncDecMsg =:= list to binary (Msg)
end
end) .
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PropEr shrinking

%% A lists delete implementation
-spec delete (T, 1list(T)) -> 1list(T).
delete (X, L) ->

delete (X, L, []).

delete( , [], Acc) ->
lists:reverse (Acc) ;

delete (X, [X|Rest], Acc) ->
lists:reverse (Acc) ++ Rest;

delete (X, [Y|Rest], Acc) ->
delete (X, Rest, [Y|Acc]).

prop delete() ->
?FORALL ({X,L}, {integer(),list(integer())},
not lists:member (X, delete (X, L)))
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PropEr shrinking

41> c(simple props) .
{ok,simple props}
42> proper:quickcheck (simple props:prop delete()) .

Failed: After 42 test(s).
{12,[-36,-1,-2,7,19,-14,40,-6,-8,42,-8,12,12,-17,3]}

Shrinking ... (3 time(s))

{12,[12,12]}
false
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PropEr integration with types

-type tree(T) :: 'leaf' | {'node',fT,tree(T), tree(T)}.

%% A tree delete implementation
-spec delete (T, tree(T)) -> tree(T).
delete (X, leaf) ->

leaf;
delete (X, {node,X,L,R}) -> join(leaf, T) -> T;
join(L, R); join({node,X,L,R}, T) ->

delete (X, {node,Y,L,R}) -> {node X Jorni(Li-RN,TY:

{node,Y,delete(X,L) ,delete(X,R)}.

prop delete() ->
?FORALL ({X,L}, {integer (), tree(integer())},
not lists:member (X, delete(X, L)))
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Integration with recursive types

41> c(mytrees).
{ok ,mytrees}
42> proper:quickcheck (mytrees:prop delete()).
Failed: After 24 test(s).
{6, {node, 19, {node,-19,1leaf,leaf},
{node, 6,leaf, {node, 6,leaf,leaf}}}}

Shrinking . (1 time(s))

{6, {node, 6,1leaf, {node, 6,leaf,leaf}}}
false
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Traditional testing of web services

Similar to other forms of software testing:
* Aquire valid input

— User provides this
(following the WSDL specification)

* Invoke operation

— Automatically
(using some existing framework, e.g. Yaws)

* Examine output

— User checks this
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PropEr testing of web services

Mostly automatic — goes as follows:
* Aquire valid input

— Automatic using some PropEr generator
(following the WSDL specification)

* Invoke operation

— Automatically
(using Yaws)

* Examine output

— Automatic (for response testing)

— Semi-automatic by writing some PropEr property
(for property-based testing)
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PropEr testing of web services
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WSDL specification

A WSDL specification contains all the necessary
information to invoke an operation

— Ports

— Bindings

— Messages

— Parts

— Most importantly (for us): Types!
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WSDL types

* Included in a <types> XML tag
* Simple primitives
— 1int, long, string, boolean,
* Aggregates
— list, union
* Complex types
— sequence, choice,

* Enumerations
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A <types> example www.webservicex.net)

<s:element name="ChangeCookingUnit">

tar espace="http://www.webserviceX.NET/">
<s:element name="ChangeCookingUnit">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="CookingValue" type="s:double"/>
<s:element minOccurs="1" maxOccurs="1" name="fromCookingUnit" type="tns:Cookings"/>
<s:element minOccurs="1" maxOccurs="1" name="toCookingUnit” type="tns:Cookings"/>
</s:sequence>
</s:complexType>
</s:element>
<s:simpleType name="Cookings">
<s:restriction base="s:string">
<s:enumeration value="drop"/>
<s:enumeration value="dash"/>

<s:enumeration value="pinch”/>
<s:enumeration value="TenCan"/>
</s:restriction>
</s:simpleType>
</s:schema>
</wsdl:types>
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A <types> example explained (1)

The "Cookings" simple type:
<s:restiction base="s:string">

IS a restriction of the primitive type string

<s:enumeration value="drop"/>

adds a value to the enumeration
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A <types> example explained (2)

The "ChangeCookingUnit" complex type:

<s:sequence>

IS a sequence of the nested elements

<s:element minOccurs="1" maxOccurs="1"
name="CookingValue" type="s:double"/>

adds a field "CookingValue" of type double
that appears exactly once
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Invoking web services with Yaws

yaws soap lib:call (WSDL uri, Op, Args)

The Args argument can become really complex

Yaws needs most arguments converted to
strings — but not all!

For large WSDL specifications, writing the input
by hand is error-prone
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Automatic creation of generators

* Parse the WSDL specification

* Extract all type information

* Break types into primitives

* Handle Yaws string conversions

* Output Yaws records as a .hrl file
* Qutput PropEr generators!
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Generators for the cooking example

generate ChangeCookingUnit 1 CookingValue() ->
?LET(Gen, float(), float to list(Gen)).

generate ChangeCookingUnit 1 fromCookingUnit Cookings() ->
elements ([ "drop","dash","pinch",...,"TenCan"]).

generate ChangeCookingUnit 1 toCookingUnit Cookings() ->
elements ([ "drop","dash","pinch",...,"TenCan"]).

generate ChangeCookingUnit 1() ->

?LET ({Pr_ChangeCookingUnit 1 CookingValue,
Pr ChangeCookingUnit 1 fromCookingUnit Cookings,
Pr ChangeCookingUnit 1 toCookingUnit Cookings},
{generate ChangeCookingUnit 1 CookingValue(),
generate ChangeCookingUnit 1 fromCookingUnit Cookings(),
generate ChangeCookingUnit 1 toCookingUnit Cookings()},
[Pr_ChangeCookingUnit 1 CookingValue,
Pr ChangeCookingUnit 1 fromCookingUnit Cookings,
Pr ChangeCookingUnit 1 toCookingUnit Cookings]).
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Automatic response testing

* When an error occurs (server error, exceptions,
out-of-bounds, etc.) a SOAP fault message is
returned

* Conservatively accept every other response

* |n this case the property creation is fully
automatic
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Property for the cooking example

prop ChangeCookingUnit responds() ->
?FORALL (Args, generate ChangeCookingUnit 1(),
case call ChangeCookingUnit (Args) of
{ok, Attribs, [#'soap:Fault'{}]} -> false;
{ok, Attribs, Result record} -> true;
__ => false
end).
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Property-based testing of web services

* Use the tool to create a file with generators and
properties

* Can use the created generators “as is”

* Simple to change them in order to refine them or
add semantic information

* Can use the property with for response testing as
our guide
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Web service with delete example

-module (myDelete).
-export ([handler/4]).

-include ("myDelete.hrl"”). % .hrl file generated by erlsom

handler ( Header, [#'p:delete’'{'list'=List,'x' = X}],
_Action, SessionValue) ->
{ok, undefined, get response(List, X)}.

delete (X, L) -> delete(X, L, []).

delete(_, [], Acc) -> lists:reverse(Acc);

delete(X, [X|Rest], Acc) -> lists:reverse(Acc) ++ Rest;
delete(X, [Y|Rest], Acc) -> delete(X, Rest, [Y|Acc]).
get response(List, X) ->

[#'p:deleteResponse’' {anyAttribs = [],
deleteReturn = delete(X,List)}].
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Automatic response test for delete

generate delete 1 list() ->
?LET(Len, range(l, inf),
vector (Len, integer(-2147483648, 2147483647))).

generate delete 1 x() ->
integer(-2147483648, 2147483647).

generate delete 1() ->
?LET({Pr_delete 1 list, Pr _delete 1 x},
{generate delete 1 list(), generate delete 1 x()},
[Pr_delete 1 list, Pr delete 1 x]).

prop delete responds() ->
?FORALL (Args, generate delete 1(),
case call delete(Args) of
{ok, Attribs, [#'soap:Fault'{}]} -> false;
{ok, Attribs, Result record} -> true;
_ => false
end).
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Semi-automatic property testing

prop delete responds() ->
?FORALL([ L, X] = Args, generate delete 1(),
case call delete(Args) of
{ok, Attribs, [#'soap:Fault'{}]} -> false;
{ok, _Attribs,
[#'p:deleteResponse’ {
deleteReturn = undefined}]} -> true;
{ok, Attribs,
[#'p:deleteResponse’ {
deleteReturn = RetList}]} ->
not lists:member (X, RetList);
__ => false
end) .
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Property-based testing

1> proper ws:generate (" p
"proper ws myDelete").

ok
2> c(proper ws myDelete).
{ok,proper ws myDelete}
3> proper:quickcheck (

proper ws myDelete:prop delete removes every x()).
Failed: After 42 test(s).
{[27,-86,-42,-14,90,10,-4,-32,8,44,4,-23,16,-42] ,-42}

Shrinking .......... (10 time(s))

{[0,0],0}
false

Kostis Sagonas PropEr Testing of Web Services


smb://tmp/myDelete.wsdl

More info on our PropEr website

|. PropEr

« » ¢ oproper.softlab.ntua.g

PropkEr

3 YouTube O3 (1 other Bookmarks

A QuickCheck-Inspired Property-Based Testing Tool for Erlang

\WET N About APl Download FAQ Publications Tips Tutorials

Contents

About: The PropEr developers

APIl: The PropEr API and its documentation

Download: With PropEr instructions on how to do this
FAQ: Frequently Asked Questions with PropEr Answers
Publications: PropEr papers and talks

Tips: For the effective use of PropEr

Tutorials: Showing the tool's PropEr use

Last edited on 2011-06-07.
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