
Combinatorrent
Writing Haskell code for fun and profit

Jesper Louis Andersen
jesper.louis.andersen@gmail.com

May, 2012

History

Combinatorrent - A bittorrent client in Haskell

I GHC (Glasgow Haskell Compiler) implementation

I Initial checkin: 16th Nov 2009

I First working version less than 2.5 months after

I Implements an actor-like model on top of STM (Software
Transactional Memory)

I 4.1 KSLOCs

Ackowledgements

This is joint work; try to make it easy to contribute:
Combinatorrent: Alex Mason, Andrea Vezzozi, “Astro”, Ben

Edwards, John Gunderman, Roman Cheplyaka, Thomas
Christensen, Nikolay Mikov

Why?

Several reasons:

I
“To fully understand a programming language, you must

implement something non-trivial with it.” – Jespers Law
I A priori
I A posteriori

I Gauge the e↵ectiveness of modern functional programming
languages for real-world problems.

I BitTorrent is a good “Problem Set”

KSLOCs

wgo combinatorrent etorrent bittornado rtorrent ktorrent transmission deluge

0
20
00
0

40
00
0

60
00
0

80
00
0

KSLOCs

wgo combinatorrent bittornado rtorrent ktorrent transmission deluge Vuze

0e
+0
0

1e
+0
5

2e
+0
5

3e
+0
5

4e
+0
5

One slide BitTorrent

I First is identity. A .torrent file uniquely identifies an array
of bytes and provides integrity

I Second is discovery - Trackers and DHT discovers other Peers
(Seeders and Leechers)

I Third is exchange - Data is transferred according to a
protocol. Incentive is based on optimistic relationsships.

I Concurrency and Parallelism are Di↵erent things

I Haskell has many tools for concurrency and parallelism: Eval
and Par monads, Repa, Accelerate, STM, MVars, Cloud
Haskell - way better coverage than Erlang.

I However, Combinatorrent adopts a conservative solution:
Channel-based message passing over STM.

I Channels are necessary because they are easier to Type.

I We can select on multiple channels by STM.

Communication (Link)

Process Hierarchy (Location)

Bigraphs

Bigraph = Hypergraph + Tree

Do not confuse with bipartite graphs.

Hypergraph is the link-graph
Tree is the location-graph

Some cool things in Haskell

I Haskell is king of abstraction (sans Proof assistants)

I Type system is expressive almost to the point of program proof

I Strong Type Zoo

I Excellent community - vibrant; practitioners and academics.

I QuickCheck - The haskell version!

I Haskell, using the GHC implementation is compiled to
machine code

I SOTA compiler, fast programs

I Essentially no need for BIFs or NIFs in implementations

I Abstraction does not have a price tag

I E�cient combinators as a result

I Statically typed language - inferred with type classes

I Very little type-level boilerplate to make things work out

I A lot of implicit tricks at the type level

I Take the Erlang Regex module as an example compared to
the Haskell equivalent

I STM is guaranteed transactional by use of a monad in the
type system

I When setting the parent in the supervisor tree, it is write-once

I Statically typed language - inferred with type classes

I Very little type-level boilerplate to make things work out

I A lot of implicit tricks at the type level

I Take the Erlang Regex module as an example compared to
the Haskell equivalent

I STM is guaranteed transactional by use of a monad in the
type system

I When setting the parent in the supervisor tree, it is write-once

I Statically typed language - inferred with type classes

I Very little type-level boilerplate to make things work out

I A lot of implicit tricks at the type level

I Take the Erlang Regex module as an example compared to
the Haskell equivalent

I STM is guaranteed transactional by use of a monad in the
type system

I When setting the parent in the supervisor tree, it is write-once

recv_message(Rate, Message) ->

MSize = size(Message),

Decoded = case Message of

...;

<<?PIECE, Index:32/big, Begin:32/big,

Data/binary>> ->

{piece, Index, Begin, Data};

end,

...

decodeMsg :: Parser Message

decodeMsg =

do m <- getWord8

case m of

...

7 -> Piece <$> gw32 <*> gw32 <*> getRemaining

where gw32 = fromIntegral <$> getWord32be

I Erlang requires special syntax and semantics

I Haskell can exploit the fact that we have an applicative

functor - No need for special handling

I Type classes lets us express higher-level structure of our
program as Functors, Applicatives, Monads, Monoids

I Re-use of operators at a higher level

I No mention of a binary!

A monoid is a set M and an operation � with properties:

I � is associative: x � (y � z) = (x � y)� z

I
M contains a neutral element e 2 M such that
e � x = x � e = x for all x 2 M.

Examples: Strings and ++, Integers and +, etc...

Example: BitTorrent extensions

I We handshake a list of extension numbers: [1, 8, 17, . . .]

I We would like to install the right extensions

I So we map to a list of extension function vectors:
[F1,F8,F17, . . .]

I The values F
x

is a record of function hooks.

I At certain places of the standard flow, we call the appropriate
hook function

I Pairwise composition of hook functions: F1 � F8 � F17 � . . .

I There is a function vector F
id

which is the identity

I (F ,�) forms a monoid, so:

I
mconcat (mapExt ExtNums) configures the extensions in
Combinatorrent

The bad in Haskell

I Lazy evaluation - space leaks

I Heap Profile – Use strictness annotations,

I Peak Mem:

I Productivity:

I CPU/Mb:

I Academic compilers, stability su↵er

I Some libraries are extremely complex type-wise

The bad in Haskell

I Lazy evaluation - space leaks
I Heap Profile – Use strictness annotations,

I Peak Mem:

I Productivity:

I CPU/Mb:

I Academic compilers, stability su↵er

I Some libraries are extremely complex type-wise

The bad in Haskell

I Lazy evaluation - space leaks
I Heap Profile – Use strictness annotations,

I Peak Mem:

I Productivity:

I CPU/Mb:

I Academic compilers, stability su↵er

I Some libraries are extremely complex type-wise

The bad in Haskell

I Lazy evaluation - space leaks
I Heap Profile – Use strictness annotations,

I Peak Mem:

I Productivity:

I CPU/Mb:

I Academic compilers, stability su↵er

I Some libraries are extremely complex type-wise

Performance

I After 2 months of tuning on and o↵ I went back to Erlang

I Unoptimized Erlang version as fast as Combinatorrent in
practice

Performance

I After 2 months of tuning on and o↵ I went back to Erlang

I Unoptimized Erlang version as fast as Combinatorrent in
practice

Lessons learned

I Take laziness seriously from the start

I Be careful when choosing libraries

Repositories

We use github for all code:

http://www.github.com/jlouis

Look for etorrent and combinatorrent

http://www.github.com/jlouis

