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FIX protocol

• Automated stock exchange trading

• Binary protocol for receiving quotes and sending orders

• No opensource erlang implementation
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FIX protocol

• Packet is a Key,Value list.

• Keys are ASCII-coded integers

• Values may vary

• Separated with 0x01 byte
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FIX protocol

• Binary protocol with three levels: transport (TCP), packet and 
business

• All business logic is described in protocol spec

• Different message types with many fields and groups of fields

• Very large protocol specification (about 100 different messages)

• 10 us limit for all parsing
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FIX protocol

• Received data is decoded to proplists

• But we use records in code

• How to translate? And do it fast!
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FIX protocol

• Large XML description how to compose objects from proplists

• XML describes syntax and semantic levels
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Problem

• Every FIX user needs only small subset of whole spec

• Impossible to work with full FIX records (more than 100 fields)

• My code works with my records and business logic

• How to fight impedance between our logic and FIX business logic?
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Ways to go

• Enterprise

• Ad-hoc

• Controlled code generation
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Enterprise way

• Object with 100 fields and 300 methods is ok

• It is Java: abstract singleton factory will make you happy

• Copy-pasted glue code will translate full spec to required subset

• Impossible to use because large size of records

• Not my way
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Ad-hoc

• Write custom code for each message type

• Workaround for broker’s bugs

• Ok for some situations

• Not my way: I’m too lazy to copy-paste code by hands
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Right way

• Autogenerate proplists-to-record translator

• Make code reuseable for others

• Design system, that can fit into other businesses

• Don’t want to write glue code

• I chose configurable code generation
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Code generation

• Parse XML

• Reduce messages according to config file

• Generate headers

• Generate parsers

• Profit!
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Headers

• Translate only required FIX messages to records

• Include only required fields in these records

• Always include “fields” field to each record for remaining data

• Dialyzer-compatible: types are known at generate time 
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Example

NewOrderSingle message with 60 fields is translated to

#new_order_single{} with 6 fields
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Syntax parser

• Translate binary fields to erlang types and back

• Don’t forget sugar: translate 0,1,2 to atoms buy, sell, make_gift

• Doesn’t depend on config

• Generate C extension (blazing fast)

• Produces readable proplist (not hash!): ordered key-value list
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Semantic parser

• Translates proplists to records

• Need to produce records, directly used in business logic

• Can loose some not important information (checksum)

• Need to handle groups of fields (most cryptic part)

• It is generated with config

• Yet have some limited ad-hoc code to keep flexibility
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Structure of semantic parser

1. Determine type of message and use compile time record info

2. Process the rest of proplist

3. If key is a known record field, write it to record

4. Else append this {Key,Value} to “fields” field

5. Use “setelement” and generated “field_index(MsgType,KeyName)”
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Results

• Simple and useable code

• FIX datatypes are used in business logic directly

• Configurable autogeneration of parser is really helpful

• Working code
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Questions?

Max Lapshin

max@maxidoors.ru
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