
Code generation
for enterprise integration

Max Lapshin
max@maxidoors.ru

Friday, June 22, 12

mailto:max@maxidoors.ru
mailto:max@maxidoors.ru


FIX protocol

• Automated stock exchange trading

• Binary protocol for receiving quotes and sending orders

• No opensource erlang implementation

Friday, June 22, 12



FIX protocol

• Packet is a Key,Value list.

• Keys are ASCII-coded integers

• Values may vary

• Separated with 0x01 byte

Friday, June 22, 12



FIX protocol

• Binary protocol with three levels: transport (TCP), packet and 
business

• All business logic is described in protocol spec

• Different message types with many fields and groups of fields

• Very large protocol specification (about 100 different messages)

• 10 us limit for all parsing

Friday, June 22, 12



FIX protocol

• Received data is decoded to proplists

• But we use records in code

• How to translate? And do it fast!

Friday, June 22, 12



FIX protocol

• Large XML description how to compose objects from proplists

• XML describes syntax and semantic levels

Friday, June 22, 12



Problem

• Every FIX user needs only small subset of whole spec

• Impossible to work with full FIX records (more than 100 fields)

• My code works with my records and business logic

• How to fight impedance between our logic and FIX business logic?

Friday, June 22, 12



Ways to go

• Enterprise

• Ad-hoc

• Controlled code generation

Friday, June 22, 12



Enterprise way

• Object with 100 fields and 300 methods is ok

• It is Java: abstract singleton factory will make you happy

• Copy-pasted glue code will translate full spec to required subset

• Impossible to use because large size of records

• Not my way

Friday, June 22, 12



Ad-hoc

• Write custom code for each message type

• Workaround for broker’s bugs

• Ok for some situations

• Not my way: I’m too lazy to copy-paste code by hands

Friday, June 22, 12



Right way

• Autogenerate proplists-to-record translator

• Make code reuseable for others

• Design system, that can fit into other businesses

• Don’t want to write glue code

• I chose configurable code generation

Friday, June 22, 12



Code generation

• Parse XML

• Reduce messages according to config file

• Generate headers

• Generate parsers

• Profit!

Friday, June 22, 12



Headers

• Translate only required FIX messages to records

• Include only required fields in these records

• Always include “fields” field to each record for remaining data

• Dialyzer-compatible: types are known at generate time 

Friday, June 22, 12



Example

NewOrderSingle message with 60 fields is translated to

#new_order_single{} with 6 fields

Friday, June 22, 12



Syntax parser

• Translate binary fields to erlang types and back

• Don’t forget sugar: translate 0,1,2 to atoms buy, sell, make_gift

• Doesn’t depend on config

• Generate C extension (blazing fast)

• Produces readable proplist (not hash!): ordered key-value list

Friday, June 22, 12



Semantic parser

• Translates proplists to records

• Need to produce records, directly used in business logic

• Can loose some not important information (checksum)

• Need to handle groups of fields (most cryptic part)

• It is generated with config

• Yet have some limited ad-hoc code to keep flexibility

Friday, June 22, 12



Structure of semantic parser

1. Determine type of message and use compile time record info

2. Process the rest of proplist

3. If key is a known record field, write it to record

4. Else append this {Key,Value} to “fields” field

5. Use “setelement” and generated “field_index(MsgType,KeyName)”

Friday, June 22, 12



Results

• Simple and useable code

• FIX datatypes are used in business logic directly

• Configurable autogeneration of parser is really helpful

• Working code

Friday, June 22, 12



Questions?

Max Lapshin

max@maxidoors.ru

Friday, June 22, 12

mailto:max@maxidoors.ru
mailto:max@maxidoors.ru

