

1

Running a 24x7 system at Kreditor

Architecture and Experiences

2

What is Kreditor?

Kreditor = creative billing solutions
● Offer your customers to pay by bill or installment without taking any risks or

increased administration for your company.

● Customer is offered the convenience of payment after delivery.

● Easier and safer compared to credit card payments.

Also:
Kreditor is Sweden's fastest growing company

Kreditor is a 100% Erlang shop.

3

History

2005 -06 -07 -08 -09

v1.0

● Company started January 2005

● First invoice went through 10 April 2005

● SW by 4 former Bluetail guys.

● Extreme timeschedule => Straightforward arch.

● Amount of work predicted to be small (!?...)

● SW guys leaves and forms Tail-f.

● Kreditor hires 2 SW devs. in end of 2005

● Tail-f gives support beginning of 2006

● Switch to Subversion (after disk-crash...)

Company founded

First invoice

Pre 1.0
● Basic invoicing
● Sweden only

Post 1.0
● Ktime (virtual time)
● Enforcement
● Other countries
● Customer credit
● Batch API
● Test framework
● Master/ActiveSlave
● Payment plans
● Bookkeeping 2 Comp.
● SMS gateway
●lots of stuff.....

Norway

Cust.creditBatch

ActiveSlave

PolicyEngine
Denm./Finland

Ktime

Subversion

Change of Data center

Transaction
optimizations

4

Historical facts

Number of connected stores:
2004: 0
2005: ~200
2006: ~800
2007: ~1700
2008: ~2800

Turnover:
2004: ~0 SEK
2005: 1.5 million SEK
2006: 13.5 million SEK
2007: 35 million SEK
2008: 90.8 million SEK

Current staff: ~100

5

Typical use cases

Kreditor

6

Use case continue

E-stores

Customers

SOAP

GUI

XML-RPC

E-stores

Customers

SOAP

GUI

XML-RPC

E-stores

Customers

SOAP

GUI

XML-RPC

KREDITOR

Score/Address
1,5

2,4

3

1. Customer buys perfume
2. E-store places order
3. Kreditor verifies that customer is OK
4. E-store activates/modifies order
5. E-store ships goods + invoice (PDF). (5.1 + 5.2 Customer pay bill)
6. Kreditor (possibly) sends reminder (PDF) to be printed.
7. Print-Shop prints and mail the reminder to Customer

3

External source

Print-Shop
6

7

IMMEDIATELY

LATER

Banks

5.1

5.2

7

External architecture

KREDITOR

E-stores

Banks Score/Address

Enforcement

Customer
Support

SVN
repo

Backup
handling

SMS
gateway

Customers

IPSec
SOAP

GUI

GUI

XML-RPC

PrintShop

Finance
Department

PDF

COBOL

8

Internal Architecture

SlaveMaster

X
BGP-setup

RAID-10

● 2xQuad Core
● 32 GB Memory
● 1 TB HDD
● Debian
● SMP-Erlang(64)

VIP VIP2 (GUI)

KDB

RPC Mnesia Transactions

Transaction Log

● All DB access via KDB
● Dirty reads is OK
● DB-Writes, only on Master

● Ordinary Mnesia tables
● Mostly Disc-copies
● Some Disc-only (2 GB limit + bug)

RAID-10

Kfile BUP Tlog1 TlogN

9

The KDB layer

● All Mnesia operations has to go through KDB

● Encapsulates mnesia:transaction/1 with:
 Transaction timeouts
 Execution on Master (via Erlang RPC)
 Transaction Log handling

● Dirty reads OK (still via KDB though)

10

Major components

● Invoice handling (xml-rpc, batch, GUI)
● Installment plans (detailed invoice to customer, interest calculations)
● Credit granting and Address lookup.
● Cronjobs (bookeeping,print shop,bank files,settlements,enforcement,...)
● Bookeeping (both internal and for E-Stores)
● KDB layer (transaction logs, daily backup, failure recovery)
● Kcases (handling of erroneous payments, etc...)
● GUI (65000 loc, Erlang+ehtml)
● Alarm and Log handling

11

Slave takeover (simplified)

● Master: NodeDown => Slave
● Slave: ping(DefGW)=true AND ping(MasterVIP)=false

● Slave:
 Setup VIP
 Start Racoon (IPSec key server)
 Do GARP (announcing where VIP is)
 Setup auto-downer (of VIP)

● Slave: Start some Master specific apps.
● Takeover takes around 1 sec.

12

Change of Data Center
Old Place: Active New Place: Passive

Sync of Transaction Logs

Master Slave Master Slave

● A new Cluster Type was introduced

● Very short TTL in DNS

● Continuous sync of Trans.Log

● Now:
✔ Stop active cluster
✔ Changed Passive to Active
✔ Change IP's in DNS
✔ Redirect (iptables) old IP's to new IP's (to handle cached DNS)

● Downtime: the above took 36 seconds

13

The new shiny Data Center

14

Problems experienced

● Dets (2GB limit, lurking bug)

● Mnesia transactions (now with timeout)

● Erlang code in Yaws pages (not good for SW upgrades)

● Performance (THG for SMP-Erlang-64-bits)

● Architecture == “Those parts that are hard to change”

● Need to do more SW dev. to grow, but can't hire until grown a bit

more...

15

Success experiences

● Robust: Sys. works even with Mnesia corrupting tables

● Upgrade of SW: many times every day

● Change of HW: due to Master-Slave architecture

● Change of data center: with 36 seconds down-time

● Upgrade to 64-bit Erlang: 4GB -> 32GB memory

● Upgrade to SMP: 1 -> 8 active cores, with no SW change

● Active Slave: 8 -> 16 active cores, with only minor SW changes

16

Ongoing architectural change

● Break out the part dealing with granting of customer credits.
 Before: Inconsistent, Spaghetti-style

 After: PolicyEngine, PolicyRules (DSL), No transactions

● Break out address handling.
 Before: Inconsistent, Address-record littering

 After: Tracability, Coherent interface, Possible to analyze

● Re-write interfaces toward external score and address sources.
 Before: Inconsistent, Inflexible

 After: Common framework, Flexible

17

How we do SW-development

● Scrum style

● Subversion, one production branch

● Yatsy test server, ~700 test cases

● CruiseControl, build+test at commit

● Trunk => ProdBranch ==> svn update on live

● Upgrade instructions in README (going towards prog. upgrades)

● One developer is always on a 24h call (serious alarms via SMS)

18

CruiseControl

● FIXME lite om testning ?

19

Statistics

20

Open Source Usage

● XML-RPC library from jungerl
● Erlguten (for PDF generation of invoices)
● Gettext from jungerl (i18n)
● Erlsom (xml schema, sax parser, for the Batch API)
● Egeoip (geolocation from Google code)
● Eper (redbug tracing and stats collecting)
● Yatsy testserver (Google code)
● Yaws
● Erlang/OTP :-)

21

Overall Experiences

● Initial architecture has served well.

● Have been possible to evolve architecture

● Architecture will need to scale further in the future

● Obstacles: get away from transactions, break out major components

● Perhaps need to choose the CAP path...
 Consistency (eventual)
 Availability
 Partitioning

Erlang is amazingly good for running a 24/7 system!

22

Future

● Kreditor will become a proper bank.
● Opens up for some exciting applications.
● Interesting architectural challenges ahead.
● More ??????????
● We are hiring (?)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

