FOTOS – Fail Over and Take Over System

Lennart Öhman

Sjöland & Thyselius

lennart.ohman@st.se

Experts in Advanced Technology

Erlang/OTP selling point

It is very easy to create multi node systems with load balancing and failover in Erlang/OTP!

or...

It is very easy to create...

What is failover?

The ability of peer nodes to detect the failure of a node and resume its responsibilities.

Failover...

- Detect failing node, and
- Decide who resumes which responsibilities.

Failover...

 Decide who resumes which responsibilities.

All nodes must agree on which nodes are in fact part of the network!

It is very easy, or...

The distributed application controller does not handle network failures.

FOTOS

- Monitoring of the network and maintain a network of operational nodes.
 - Without having to elect a leader.
- A simple database with vector clock controlled updates.

Assumptions

- All nodes are loyal and follows "the rules".
- Messages between two nodes are delivered in the same order as sent.
- External means of detecting a partitioned network.

Monitoring of the network

A network of operational nodes

- A fully connected mesh of Erlang nodes.
- Only nodes that can "see" all other participating nodes may participate.

The node state machine

The node state machine

An operational node may be either stable or unstable.

Network start

The first thing a newly started node does is to try to start a network of operational nodes.

It contacts all known nodes to see if they want to help create a network of operational nodes.

Joining a network of operational nodes

A newly started node tries to join a network if it "sees" all nodes.

If it is participating in another procedure currently.

Monitoring of the network

A node that detects a peer node failure suggests its removal.

> A node may not be removed unless all other nodes (except the failed node) agrees.

Monitoring of the network

Experts in Advanced Technology

Single failure optimization

- A node may only run one procedure at a time.
 - Removing or joining one node at a time.
- If multiple simultaneous failures, no guarantee the result is the most optimal possible network.

Network unstable

- As soon as a node learns of that a participating node is not visible from one or several nodes – the network is deemed unstable.
- In first "person" ('DOWN' message).
- "Rumor" from another node that wishes to remove the now failed node from the network of operational nodes.

There is no magic!

You must still make fail-over and load balancing decisions!

Based on stable/unstable.

Based on changes of the set of participating nodes.

You must provide a "holy grail"

In case of a completely partitioned network

 a "holy grail" is needed to decide which network is the "real network".

Some spin-offs

- 2 Phase Commit
 - 2 phase commit with rendezvous
- A Vector Clock

FOTOS summary

- Subscribe to stability status.
- Subscribe to changes in the set of operational nodes.
- Optimized for single failure.
- A simple database with vector clock protected updates.