
High-availability Erlang from the trenches

Dominic Williams Fabrice Nourisson

Extreme Forge

8 november 2012

1/20

Sommaire

Intro

HA Erlang patterns and idioms
General coding tips
Putting bounds
Hot code loading
Miscellaneous

Q&A

2/20

Extreme Forge

I Erlang and Agile (esp. eXtreme Programming)
I Training, consulting
I Developers for hire
I The Alonzo Quartet: a team of 4 experienced

Erlang/Ember.js developers with an XP bent

http://extremeforge.com

3/20

http://extremeforge.com

Who we are

I We are:
I Developers
I Project managers
I Consultants
I Trainers

I With 15 years experience in:
I Train control systems
I Telecommunication systems
I Web development

4/20

HA Erlang systems we’ve worked on

I Cellicium/Myriad USSD gateway/portal
I 30 telco operators worldwide
I Biggest deployments: 20 million users, 5000 MPS
I 99,99% uptime
I Monthly upgrades

I Initial architecture of MIG SMS gateway
I Corporama.com web site
I Telco operator call center web service

5/20

Underscore prefix considered harmful

Example

foo (X, _Args, _) ->
case baz (X) of

{ok, Result, _} ->
Result;

{error, _Args} ->
error

end.

Intent
Simplify code and avoid bugs

6/20

Underscore prefix considered harmful

Motivation
Unlike the anonymous variable (_), variables starting with an
underscore (_Foo) are bound. They are usually used to silence the
warning about unused variables. However, because they are bound,
they can introduce bugs.

Recommendation
Never use the underscore prefix; only use the anonymous variable
to ignore things.

Implementation
Patch proposed in erl_lint.erl to add warning.

7/20

Learn to use gen_server timeouts

Intent
Perform an action regularly when a gen_server is idle

Motivation
Many designs to achieve this are overly complicated:

I using a separate gen_server
I using timers
I . . .

gen_server provides a little known timeout feature to achieve,
very simply, this frequent design need.

Recommendation
Use the optional timeout in handle_call or handle_cast return
tuples to perform regular idle actions

8/20

Learn to use gen_server timeouts

Example

handle_call (_, Msg, State) ->
...
{reply, Reply, New_state, ?timeout}.

handle_info (timeout, State) ->
{stop, normal, State}. % stops an idle process

Known uses
I Stopping an idle process
I Keeping a connection alive
I Closing an unused resource (file, socket...)
I Re-registering a lost worker

9/20

High-availability and let it crash

I Erlang provides everything to supervise and restart processes
I In the small, code is much cleaner and simpler if you let it

crash
I In a larger sense, for very high availability, much care must be

taken not to let the VM crash, or OS resources run out (disk
space, file descriptors...)

10/20

Don’t leak atoms

Example

fill () -> fill (0, init).

fill (N, _) ->
Atom = list_to_atom (integer_to_list(N)),
fill (N+1, Atom).

1> atom:fill().

Crash dump was written to: erl_crash.dump
no more index entries in atom_tab (max=1048576)
Aborted

11/20

Don’t leak atoms

Intent
Prevent the atom table from filling up

Motivation
I The VM will crash if you use too many atoms (by default

1048576)
I Atoms are created in many ways:

I hand-written code (modules, functions, intentional atoms)
I generated code (e.g. ASN.1 compiler, yecc)
I reading files (config, file:consult)
I parsing (e.g. XML, JSON, ...)

Recommendation
Don’t use list_to_atom/1 and beware of libraries that do (e.g.
xmerl). Use list_to_existing_atom/1 or tag tuples with
strings/binaries.

12/20

Use a fixed number of processes

Intent
Avoid running out of memory or overloading CPU

Motivation
I The VM will crash if it runs out of memory
I If system load goes up, unexpected things will start happening

Recommendation
Use a fixed number of processes (even connections, workers)

13/20

Always spawn fresh processes

Intent
Avoid unexpected bugs and leaks

Motivation
I Spawning and terminating Erlang processes has negligible cost
I Processes get dirty over time:

I Leaks and old values in process dictionary
I Unpurged message queue
I Memory allocation/collection can be affected by history

Recommendation
Always spawn fresh worker processes; don’t recycle them for
several jobs

14/20

Use a job queue and a bounded number of workers

Intent
Control the load on the system

Motivation
I Use a fixed number of processes
I Always use fresh processes to perform work
I Have an easy way to balance load

Recommendation
Use a job queue and spawn fresh worker processes; put an upper
bound on the number of workers.

15/20

Use a job queue and a bounded number of workers

Implementation

I Keep a queue of jobs to be performed
I Create fresh processes to perform work
I Limit the number (N * erlang:system_info(schedulers))
I Make N configurable (and set according to load tests)
I Details depend on supervision needs, e.g.:

I use simple_one_for_one supervised processes
I spawn plain Erlang processes otherwise

I If workers are on multiple nodes, balance the load

16/20

Avoid records

Intent
Simplify hot code reloading

Motivation
I Records complicate hot code reloading
I Different versions of record are incompatible
I Public (API) records are the worst
I Process state (e.g. gen_server) can be handled by OTP but

it is more complicated
I dict’s are much simpler and more flexible

Recommendation
Avoid records, especially public records (included by several
modules) and state records; prefer dicts, orddicts or proplists.

17/20

Code is data

Intent
Simplify hot code reloading by keeping data in Erlang code

Motivation
I External files (config, data, templates...) affect the behaviour

of the system
I Changes are not handled as well as hot code reloading
I Because Erlang code can be reloaded, there is no real need for

putting anything in files
I Config files are a legacy from the days when code was harder

to upgrade than text files

Recommendation
Use code (Erlang modules) for everything, including configuration

18/20

Miscellaneous recommendations

I Systematically perform serious performance tests and
measures: load, endurance, capacity, stress, This requires
a dedicated platform and serious effort.

I Systematically test upgrading (hot code reloading) before
doing it on live system

I Don’t log debug info (only customer’s auditing/history)
I Become familiar with tracing, dbg etc.
I Become familiar with Erlang’s system limits (cf. doc)
I File system: log rotation, ...

19/20

Questions?

mailto:contact@extremeforge.com

20/20

mailto:contact@extremeforge.com

	Intro
	HA Erlang patterns and idioms
	General coding tips
	Putting bounds
	Hot code loading
	Miscellaneous

	Q&A

