
Erlang and RTEMS

Embedded Erlang, two case studies

Peer Stritzinger

Talk at Erlang Factory Light Munich 2013

• Case 1: Hydraprog-3, Reflashing system for Automotive
"Embedded Control Units" (= ECUs)

• Big picture

• Erlang code structure

• Lessons learnt

• Case 2: Intelligent RFID Antenna

• Porting Erlang on RTEMS (work in progress)

Outline 

• LIN ✓

• LS-CAN ✓

• HS-CAN ✓

• FlexRay ✓

• MOST ✓

• OABR (Ethernet with special Phys. Layer) (... in development)

• APIX1+2 ✓ - Ethernet via APIX (... in development)

Automotive Protocols

Automotive Protocol Properties

• Flash process in most cases defined over Diagnostic
protocol

• Ping-Pong protocol => latency issues

• Mapping to lower level: usually bursty with timing/buffer
negotiations

• realtime requirements: semi-hard-realtime to really-hard

• Big variety of link and physical layers

Mainboard
Mini ITX

Intel Atom

FreeBSD, Erlang

Ethernet Switch / USB Hub

Gateways
custom

Freescale
MPC5517

RTEMS

Gateways
custom

Freescale
MPC5517

RTEMS

USB USBEthernet

FreeBSD

• Boots from read-only CF-card partition

• 2 Partitions for upgrade

• Partition for config storage copied to /etc in ramdisk

• Extra partition for logging

• Built with NanoBSD script

Erlang

• Runs as much of the automotive protocols as possible

• Protocol layers stackable by user config

• Uses libusb in a port to talk to the gateways

• USB bus is scanned regularly

• Supervised protocol stacks are started for each gateway

Distributed Device

• Multiple devices self network

• Behave like one device with more channels

RTEMS

• Hard-Realtime embedded executive

• Small core with several APIs

• Posix API

• TCP/IP stack

• Several schedulers

RTEMS cont.

• About the same age as Erlang

• Also very robust

• Runs in many satellites and planetary probes

• Industrial and Automotive applications

• Great support in Europe: www.embedded-brains.de

RTEMS in Hydraprog-3 Gateways

• Gets commands and data packets from USB

• Controls and switches power to the connected ECUs

• Protocol parts that require hard realtime or low latency

• Talks to Low-Speed CAN, High-Speed CAN, FlexRay,
MOST, LIN

• Controls the display LEDs

Talking to (internal) USB Devices

• C executable + libusb via port

• Easy error handling

• Problem: USB device enumeration doesn’t tell you what is
where

• Solution: Id + Serial number + Hw-Config file

• Also: USB is weird

• But bulk endpoints are easy once they are established

USB Hot-Plugging

scan_usb gateway_sup

sup sup sup

worker workerworker

temporary

transient

Gateway queue handling

control

eeprom

ls_can

power

Gateway
usb_mux

control
eeprom
ls_can
power

usb_port

libusb-port.c

usb

Protocol Layer Plumbing

• Dynamic configuration during startup

• Minimize latency

• Differing state requirements

• Stateless -- encoders/decoders

• Configuration state

• Runtime state

Example: MOST Stack

uds_most

most_high

most_nwm

most

most_tmm

most_seg inic

most_msgs

codec_most
{moco_hbi}

codec_most
{inic_ctrl}

codec_most
{moco_ctrl}

devnull autosar_nm codec_can

most_msgs

most_msgs

usb_mux

Example: MOST Stack

 [[[uds_most, most_high, most_nwm, most, most_tmm,
 most_seg, inic,
 [[most_msgs, {codec_most, [inic_ctrl, simple]},
 {usb_mux, ['Usb_mux', inic_ctrl]}],
 [most_msgs, {codec_most, [moco_ctrl, simple]},
 {usb_mux, ['Usb_mux', moco_ctrl]}],
 [most_msgs, {codec_most, [moco_hbi, simple]},
 {usb_mux, ['Usb_mux', moco_hbi]}]]],
 [devnull, autosar_nm, {codec_can, []},
 {usb_mux, ['Usb_mux', hs_can]}]]]}

• Dynamic config: DAG like combination of modules

Protocol-Stack config and Flash-Data Distribution

Data

Logs

Signed Autoexec Erlang App

*.h3x

Erlang app
config

signed & encrypted

Auth keys

extra
modules

User Data
+ Script

*.zip

Scripting "language"

• Re-used Erlangs parser

• Interpreting the abstract syntax

• Different, domain specific semantics

Reducing Latency

• Send - Expect Engine in Gateway

• Complicates protocol implementation

• Enables streaming + optimal performance

• Libusb support as port driver

• High stability requirements

• Initially on separate nodes

Lessons Learnt

• Use gproc next time right away

• Startup was messier than it needed to be without it

• Use Quickcheck for testing right away

• Start doing OTP Releases earlier

Erlang and RTEMS in Hydraprog-3

• Collaborates on different CPUs

• Best of both worlds

• Solution for larger devices

• More on http://www.stritzinger.com

What about Hard Realtime?

• Erlang has very good soft realtime responsiveness

• Embedded applications often need hard realtime

• Erlang alone can't do this

• Especially on "normal" operating systems

• Usually only small part required to be hard realtime

Erlang Running on RTEMS

• Small embedded system

• Only a small communication controller

• Freescale MPC8309

• Still want best of both worlds

• RTEMS Posix API has almost everything Erlang needs

Porting Erlang to RTEMS

• Work in progress, at the moment (Feb 2013)

• Erlang shell on RS232 console

• Linked in drivers

• Cross-built with otp_build using RTEMS build tools

• RTEMS gets linked as a library

• File access on target via NFS

In Progress

• Get distribution working (epmd needs porting or faking)

• Build Erlang as loadable application with new RTEMS
Linker

• Threads for async I/O

• Support for NIFs with new dynamic linking support

• Adding kqueue support to RTEMS

Future

• Support for some RTEMS primitives from Erlang

• Get all necessary patches back to RTEMS and OTP

• Have a documented standard way to build Erlang/RTEMS

• Once RTEMS gets stable SMP, support it from Erlang

Questions

• Contact: peer@stritzinger.com

• Twitter: @peerstr

• IRC: peerst

mailto:peer@stritzinger.com
mailto:peer@stritzinger.com

