Retour d'expérience

Erlang Factory – 30 nov. 2012

PRÉSENTATION / CONTEXTE

Fonctionnalités Centre de Contact

- Front: Serveurs vocaux interactifs / mail /chat / Réseaux sociaux
- Back : Stratégies de mise en relation du client et de distribution
- Contextualisation du parcours client
- Reporting

Exigences Centre de Contact

- Temps réel (latence inférieure à 300ms)
- Continuité de service

Agilité et processus industriels

- Tests et analyses
- Déploiement

TECHNOLOGIES ACTUELLES ET ERLANG

Technologie actuelle autour des langages objets

- Serveurs d'applications
- Orienté objet
- Nombreux frameworks

Caractéristiques Erlang attendues

- Chargement du code à chaud
- Robustesse et continuité de service
- Parallélisation des traitements
- Agilité du développement

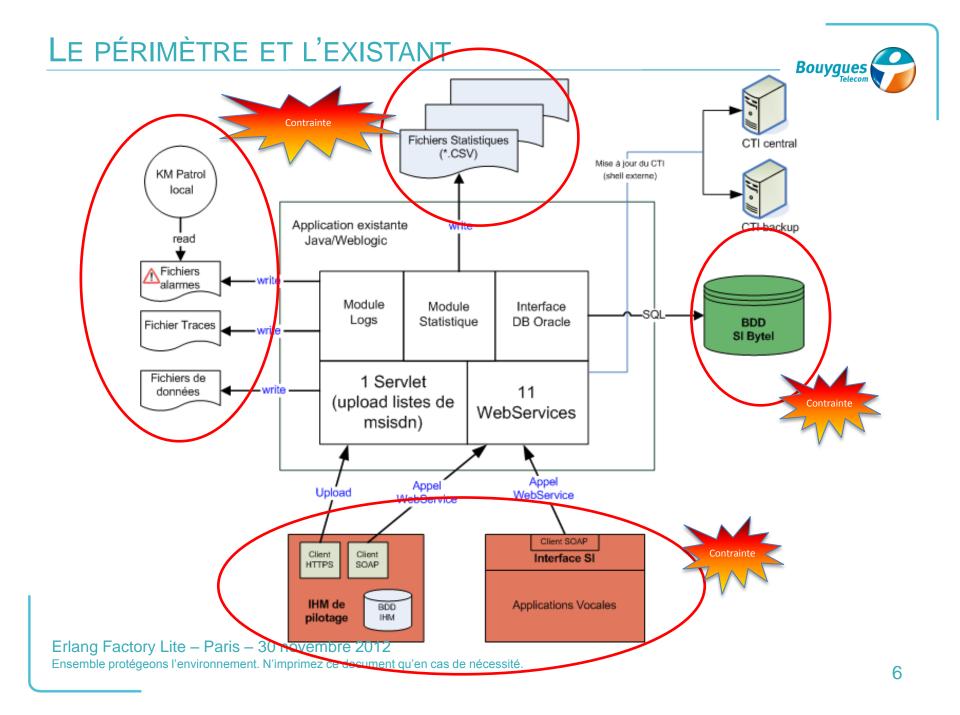
LE PROJET: CONSTITUTION

- Constitution de l'équipe
 - 2 internes experts en développement

2 intervenants experts sur la technologie Erlang

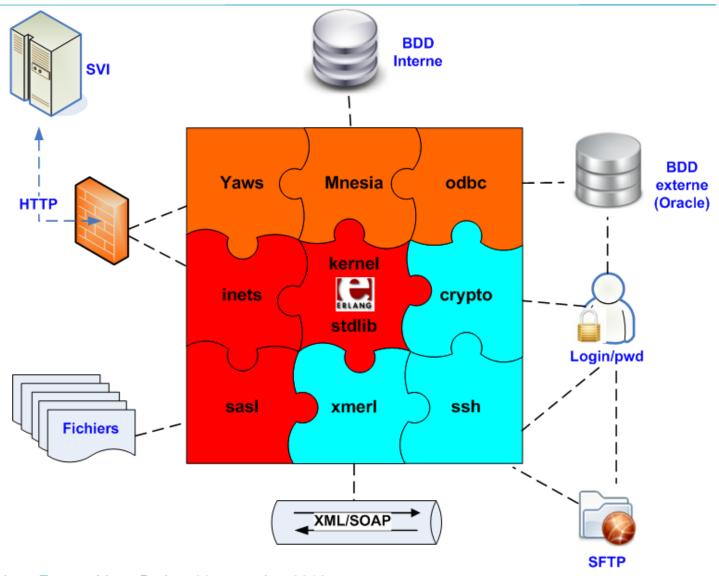
- Formation
 - Formation théorique sur le langage Erlang
 - Egalement OTP / Yaws / Mnesia
 - Accompagnement des experts Erlang durant tout le projet
 - Fonctionnement en binômes / relectures

LE PROJET : LANCEMENT



Objectif du projet

- Réduire la complexité et les temps de MEP (update à chaud)
- Assurer la robustesse et la performance du système
- Expérimenter l'agilité et la rapidité de développement du langage

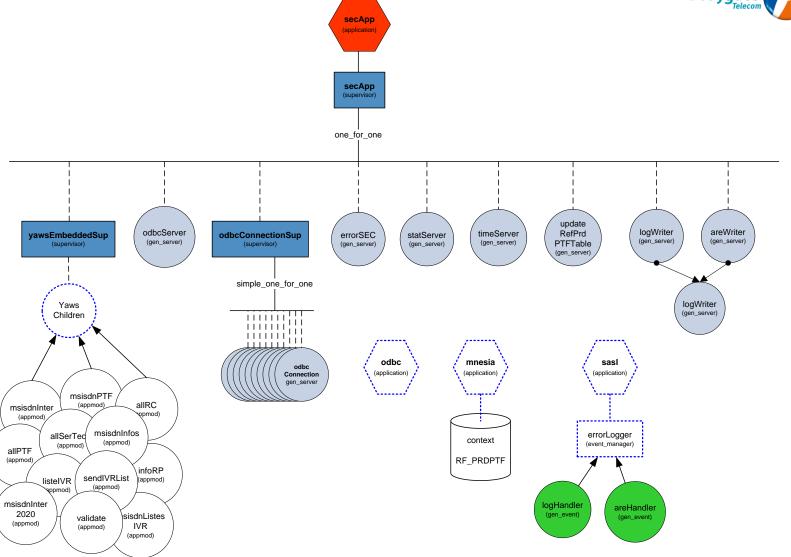

Sélection du périmètre

- Correspondance à la roadmap
- Application se prêtant à Erlang
- Risques modérés : Périmètre identifié en obsolescence
- Nouvelles fonctionnalités

COMPOSANTS ERLANG

Erlang Factory Lite – Paris – 30 novembre 2012

Ensemble protégeons l'environnement. N'imprimez ce document qu'en cas de nécessité.


L'ARCHITECTURE OBTENUE Application Cible Nœud Erlang secApp Fichiers timeServer Statistiques statServer gen_server gen_server (*.CSV) Contrainte KM Patrol local odbc errorSEC Connection gen_server Sup odbcServer read supervisor gen_server areWriter alarmes gen_server odbc Connection BDD Fichier Traces logWriter gen_server SI Bytel gen_server Contrainte UpdateRf PrdPtfTable ODBCgen_server areHandler logHandler gen_event gen_event Mnesia NEW ! (DB) msisdnInter2020 msisdnInfos msisdnInter sendIVRList allSerTech msisdnPTF infoRP context Fichiers de Embedded YAWS (Webserver) RF_PRDPTF Sup données supervisor Mise à jour du CTI Ē Ē (shell externe) Client SOAP Contrainte Client HTTPS Client Interface SI CTI central IHM de **Applications Vocales** BDD pilotage Erlang Factory Lite - Paris - 30 poven

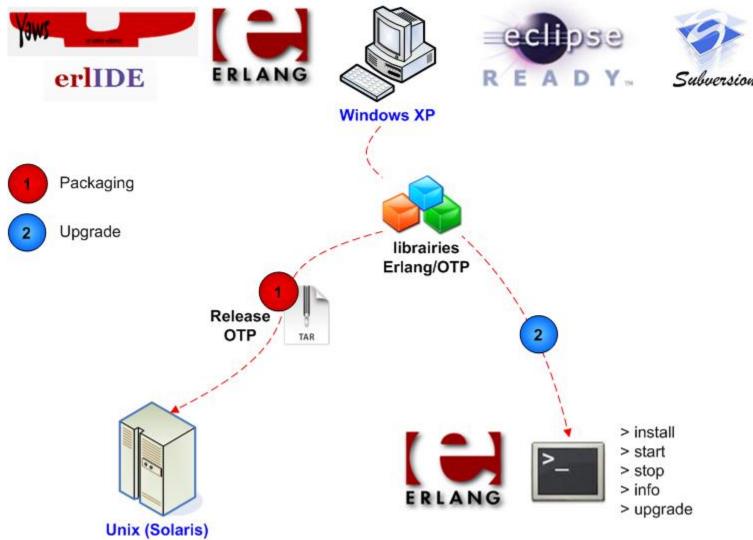
Ensemble protégeons l'environnement. N'imprimez es document qu'en cas de nécessité

CTI backup

SUPERVISION INTERNE

Erlang Factory Lite – Paris – 30 novembre 2012

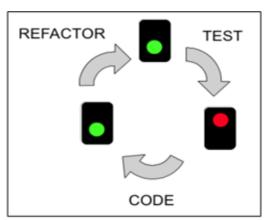
Ensemble protégeons l'environnement. N'imprimez ce document qu'en cas de nécessité.


MÉCANISME DE RECHARGEMENT À CHAUD

- Permet l'installation et le retour arrière d'évolutions sans arrêter l'application
 - Une simple ligne de commande shell
- Toutefois, l'intelligence se trouve en amont
- Importance de suivre les standards OTP
- Nécessite une conception de l'architecture dynamique de l'application tenant compte :
 - de l'arbre de supervision
 - des relations entre les processus serveurs
 - des états internes des processus serveurs
- Mais aussi une conception de la mise en œuvre
 - Développement d'un script d'upgrade dédié inspiré de Rebar

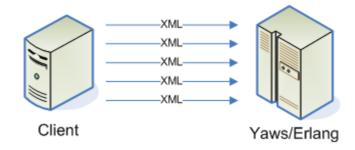
DÉVELOPPEMENT & DÉPLOIEMENT

Erlang Factory Lite – Paris – 30 novembre 2012
Ensemble protégeons l'environnement. N'imprimez ce document qu'en cas de nécessité.

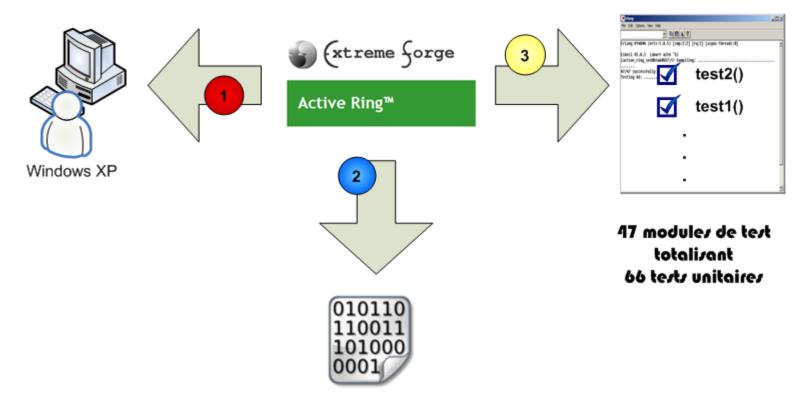

TDD ou « Tests Driven Development »

Tests unitaires

Intégration continue



Tests d'appel webservice


Tests de charge

TDD ou « Tests Driven Development »

2 Recompile les sources

3 Lance les tests unitaires

RETOUR D'EXPÉRIENCE : LES +

- 2 Mises à jour à chaud réussies et rapides
- Facilité d'exploitation : une seule ligne de commande pour

- Installer
- Démarrer/arrêter
- Obtenir des informations
- Mettre à jour « à chaud »
- Élimination de la brique « serveur d'application » (Weblogic)
- Approche « agile », incrémentale & déclarative de la programmation
 - Possibilité de coder directement dans la console (boucle d'interaction)
- Adapté pour les traitements parallèles et distribués
- Technologie pensée pour une application industrielle

RETOUR D'EXPÉRIENCE : LES -

Gestion « manuelle » des WSDL

- Goulot d'étranglement lié au connecteur ODBC
- Communauté active mais relativement restreinte
- Compétences Erlang et fonctionnelles relativement rares
- Documentation hétérogène

Erlang Factory Lite – Paris – 30 novembre 2012 Ensemble protégeons l'environnement. N'imprimez ce document qu'en cas de nécessité.