Robert Virding

Principle Language Expert
Erlang Solutions %_td

Erlang Solutions Ltd.

Why Erlang 1s that it is
(.. and what is it?)

W © 1999-2012 Erlang Solutions Ltd.
Tuesday, December 4, 12

Overview

® A bit of history

&M © 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12

Ancient history

e All started in Ericsson Computer Science Lab

e "Everybody” wrote POTS programs to make
phones ring on our MD110 in lab

e 1986: First reference to "Erlang” in paper at Logic
conference describing writing telecom apps in
concurrent logic

e Joe started programming telephony in Smalltalk

based on communicating processes with ideas
from CSP

— and then started using Prolog

(SVM © 1999-2012 Erlang Solutions Ltd. 3

Tuesday, December 4, 12

Early history

e Mike and | join the team
e First Erlang implementations of Erlang in Prolog

e We worked out suitable concurrency and error
detection/handling models

— Lots of discussions about this

e Erlang “wanders over” from Prolog to a functional
language

— Unwanted properties of Prolog
— backtracking and logical variables

é/m © 1999-2012 Erlang Solutions Ltd. 4

Tuesday, December 4, 12

Middle ages

e 1990: ISS and “The Movie”

— Erlang first presented to the world
e Need more speed for potential product
e First Erlang VM, the JAM, developed

— Could now implement dynamic code loading

e Erlang more or less now complete as to basics

W © 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12

Some reflections

e We thought a lot about the problem

e Basic “specification” for Erlang system were taken
from AXE10 and PLEX
— For example need for, and type of, error handling
— Safe language
— BUT use conventional hardware and OS

e Very few initial goals as to details of Erlang

— It just "became” a functional language

— Concurrency and error handling more natural as part
of the language

@‘[apj@ © 1999-2012 Erlang Solutions Ltd. 6

Tuesday, December 4, 12

Overview

® A bit of philosophy

W © 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12

Basic principles/requirements

e Lightweight, massive concurrency

— Asynchronous communication
e Process isolation
e Error handling
e Continuous evolution of the system

— Dynamic code updating
e Soft real-time
e Distribution

W © 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12

Secondary principles/requirements

e Simple high-level language
e 'Safe” language
e Provide tools for building systems, not solutions

— Too limited
— (and we usually got them wrong)

é}“&ly © 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12

Overview

® A few examples

SOLUTIONS

© 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12

How Erlang does it

© 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12

Sequential Language

e Simple functional language
— With a “different” syntax

e [tis safe!

— For example no pointer errors
e It is reasonably high-level

— At least then it was

e Dynamically typed

é}“&ly © 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12

Sequential Language

e Typical features of functional languages

— Immutable data

— Immutable variables

— Extensive use of pattern matching
— Recursion rules!

&M © 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12

Concurrency

e Light-weight “green” processes

— Millions of Erlang processes possible on one
machine

— and running in a product

e Processes are used for everything

— Concurrency
— Managing state

e Processes are isolated!
e No global data!

@‘[apj@ © 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12

Concurrency: message passing

e Only provide basic primitives
e Very cheap asynchronous message passing

— Send a message to a process
— Selective receive
— Limits combinatorial explosion in nhon-
deterministic systems

e More complex operations built using send/
receive

— Synchronous messages built from 2 sends
— Error handling complicates matters

@‘[apj@ © 1999-2012 Erlang Solutions Ltd. 15

Tuesday, December 4, 12

Concurrency: message passing

Pid1l

ey

Pid2

receive
start —> ...
stop —> ...
{Pid, foo} —>

end

Messages are sent using
the Pid ! Msg expression

Received messages are
stored in the process’s
mailbox

Messages are received
using the receive ... end
expression

Messages can be matched
and selectively retrieved

Mailboxes are scanned
sequentially.

© 1999-2012 Erlang Solutions Ltd. |6

Tuesday, December 4, 12

Concurrency: message passing

Pid1l

‘_ {Pid1, foo} F1d2
@

Pid2 ! {self(),foo}

receive
start —> ...
Stop —-> EE N

{Pid, foo} —>

end

Messages are sent using
the Pid ! Msg expression

Received messages are
stored in the process’s
mailbox

Messages are received
using the receive ... end
expression

Messages can be matched
and selectively retrieved

Mailboxes are scanned
sequentially.

é‘KM © 1999-2012 Erlang Solutions Ltd. |6

Tuesday, December 4, 12

Concurrency: message passing

Pid1l

‘_ {Pid1, foo} F1d2
@

Pid2 ! {self(),foo}

receive
start —> ...
Stop —-> EE N

{Pid, foo} —>

end

Messages are sent using
the Pid ! Msg expression

Received messages are
stored in the process’s
mailbox

Messages are received
using the receive ... end
expression

Messages can be matched
and selectively retrieved

Mailboxes are scanned
sequentially.

é‘(&lg © 1999-2012 Erlang Solutions Ltd. |6

Tuesday, December 4, 12

Error handling

ERRORS WILL ALWAYS
OCCUR!

Error handling

The system must never go
down!

Parts may crash and burn
BUT
The system must never go down!

é}‘&ly © 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12

Error handling

System must be able to

— Detect

— (Contain
— Handle
— Recover from

errors

SOLUTIONS

© 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12

Error handling

P1dA

e Links between processes

PidB e EXxit Signals are sent
along links when
processes terminate
abnormally

e The process receiving the
signal will exit

e Then propagate a new
signal to the processes to
which it is linked

© 1999-2012 Erlang Solutions Ltd. 20

Tuesday, December 4, 12

Error handling

e Links between processes

PidB e EXxit Signals are sent
along links when
processes terminate
abnormally

e The process receiving the
signal will exit

e Then propagate a new
signal to the processes to
which it is linked

© 1999-2012 Erlang Solutions Ltd. 20

Tuesday, December 4, 12

Error handling

e Links between processes

e Exit Signals are sent
along links when
processes terminate
abnormally

e The process receiving the
signal will exit

e Then propagate a new
signal to the processes to
which it is linked

W © 1999-2012 Erlang Solutions Ltd. 20

Tuesday, December 4, 12

Error handling

e Processes can trap exit
signals.

e Exit signals will be
converted to messages

e They are saved in the
process mailbox

e If an exit signal is
trapped, it does not
propagate further

© 1999-2012 Erlang Solutions Ltd. 21

Tuesday, December 4, 12

Error handling

e Processes can trap exit
signals.

e Exit signals will be
converted to messages

e They are saved in the
process mailbox

e If an exit signal is
trapped, it does not
propagate further

© 1999-2012 Erlang Solutions Ltd. 21

Tuesday, December 4, 12

Error handling

e Processes can trap exit

signals.
P1dB e Exit signals will be
@ converted to messages
e They are saved in the

process mailbox

e If an exit signal is
trapped, it does not
propagate further

© 1999-2012 Erlang Solutions Ltd. 21

Tuesday, December 4, 12

Robust systems

How do you build robust systems?

e You nheed to ensure

— Necessary functionality always available
— System cleans up when things go wrong

e Must have at least two machines!
— Need distribution

@‘[apj@ © 1999-2012 Erlang Solutions Ltd.

22

Tuesday, December 4, 12

Robust systems: Supervision trees

e Supervisors will start child processes

— Workers
— Supervisors

e Supervisors will monitor sypervisors
their children

— Through links and trapping exits

e Supervisors can restart the
children when they terminate Workers

W © 1999-2012 Erlang Solutions Ltd. 23

Tuesday, December 4, 12

Robust systems: Monitor processes

e Servers monitoring clients
— Clean-up after then if they crash

e Processes monitoring co-workers
e Groups of co-workers dying together

é@&lg © 1999-2012 Erlang Solutions Ltd.

24

Tuesday, December 4, 12

Code handling

e Module is the unit of all code handling

— No inter-module dependencies
— Causes problems with static typing

e Have two versions of each module

— Old and current
— Allows controlled take-over

e Well defined behaviour with respect to code

— You KNOW w
— You KNOW w

nat happens when you call a function

nat happens when you load a module

© 1999-2012 Erlang Solutions Ltd.

25

Tuesday, December 4, 12

