
Erlang Solutions Ltd.

© 1999-2012 Erlang Solutions Ltd.

Why Erlang is that it is
(... and what is it?)

Robert Virding
Principle Language Expert
Erlang Solutions Ltd.

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Overview

• A bit of history
• A bit of philosophy
• A few examples

2

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Ancient history

• All started in Ericsson Computer Science Lab
• “Everybody” wrote POTS programs to make 

phones ring on our MD110 in lab
• 1986: First reference to "Erlang" in paper at Logic 

conference describing writing telecom apps in 
concurrent logic

• Joe started programming telephony in Smalltalk 
based on communicating processes with ideas 
from CSP
- and then started using Prolog

3

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Early history

• Mike and I join the team
• First Erlang implementations of Erlang in Prolog
• We worked out suitable concurrency and error 

detection/handling models
- Lots of discussions about this

• Erlang “wanders over” from Prolog to a functional 
language
- Unwanted properties of Prolog

- backtracking and logical variables

4

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Middle ages

• 1990: ISS and “The Movie”
- Erlang first presented to the world

• Need more speed for potential product
• First Erlang VM, the JAM, developed

- Could now implement dynamic code loading

• Erlang more or less now complete as to basics

5

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Some reflections

• We thought a lot about the problem
• Basic “specification” for Erlang system were taken 

from AXE10 and PLEX
- For example need for, and type of, error handling
- Safe language
- BUT use conventional hardware and OS

• Very few initial goals as to details of Erlang
- It just "became" a functional language
- Concurrency and error handling more natural as part 

of the language
6

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Overview

• A bit of history
• A bit of philosophy
• A few examples

7

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Basic principles/requirements

• Lightweight, massive concurrency
- Asynchronous communication

• Process isolation
• Error handling
• Continuous evolution of the system

- Dynamic code updating

• Soft real-time
• Distribution

8

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Secondary principles/requirements

•  Simple high-level language
• "Safe" language
• Provide tools for building systems, not solutions

- Too limited
- (and we usually got them wrong)

9

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Overview

• A bit of history
• A bit of philosophy
• A few examples

10

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

How Erlang does it

11

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Sequential Language

• Simple functional language
- With a “different” syntax

• It is safe!
- For example no pointer errors

• It is reasonably high-level
- At least then it was

• Dynamically typed

12

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Sequential Language

• Typical features of functional languages
- Immutable data
- Immutable variables
- Extensive use of pattern matching
- Recursion rules!

13

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Concurrency

14

• Light-weight “green” processes
- Millions of Erlang processes possible on one 

machine
- and running in a product

• Processes are used for everything
- Concurrency
- Managing state

• Processes are isolated!
• No global data!

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Concurrency: message passing

• Only provide basic primitives
• Very cheap asynchronous message passing

- Send a message to a process
- Selective receive

- Limits combinatorial explosion in non-
deterministic systems

• More complex operations built using send/
receive
- Synchronous messages built from 2 sends
- Error handling complicates matters

15

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Concurrency: message passing
• Messages are sent using 

the Pid ! Msg expression

• Received messages are 
stored in the process’s 
mailbox

• Messages are received 
using the receive ... end 
expression

• Messages can be matched 
and selectively retrieved

• Mailboxes are scanned 
sequentially.

16

Pid2
Pid1

receive
  start -> ...
  stop  -> ...
  {Pid,foo} ->
    ...
end

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Concurrency: message passing
• Messages are sent using 

the Pid ! Msg expression

• Received messages are 
stored in the process’s 
mailbox

• Messages are received 
using the receive ... end 
expression

• Messages can be matched 
and selectively retrieved

• Mailboxes are scanned 
sequentially.

16

Pid2
Pid1

Pid2 ! {self(),foo}

{Pid1,foo}

receive
  start -> ...
  stop  -> ...
  {Pid,foo} ->
    ...
end

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Concurrency: message passing
• Messages are sent using 

the Pid ! Msg expression

• Received messages are 
stored in the process’s 
mailbox

• Messages are received 
using the receive ... end 
expression

• Messages can be matched 
and selectively retrieved

• Mailboxes are scanned 
sequentially.

16

Pid2
Pid1

Pid2 ! {self(),foo}

{Pid1,foo}

receive
  start -> ...
  stop  -> ...
  {Pid,foo} ->
    ...
end

  {Pid,foo} ->
    ...

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Error handling

ERRORS WILL ALWAYS 
OCCUR!

17

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Error handling

The system must never go 
down!

Parts may crash and burn
BUT

The system must never go down!
18

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Error handling

System must be able to
- Detect
- Contain
- Handle
- Recover from

errors

19

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Error handling
• Links between processes

• Exit Signals are sent 
along links when 
processes terminate 
abnormally

• The process receiving the 
signal will exit

• Then propagate a new 
signal to the processes to 
which it is linked

20

PidA PidB

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Error handling
• Links between processes

• Exit Signals are sent 
along links when 
processes terminate 
abnormally

• The process receiving the 
signal will exit

• Then propagate a new 
signal to the processes to 
which it is linked

20

PidB

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Error handling
• Links between processes

• Exit Signals are sent 
along links when 
processes terminate 
abnormally

• The process receiving the 
signal will exit

• Then propagate a new 
signal to the processes to 
which it is linked

20

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Error handling
• Processes can trap exit 

signals. 

• Exit signals will be 
converted to messages

• They are saved in the 
process mailbox

• If an exit signal is 
trapped, it does not 
propagate further

21

PidA
PidB

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Error handling
• Processes can trap exit 

signals. 

• Exit signals will be 
converted to messages

• They are saved in the 
process mailbox

• If an exit signal is 
trapped, it does not 
propagate further

21

PidB

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Error handling
• Processes can trap exit 

signals. 

• Exit signals will be 
converted to messages

• They are saved in the 
process mailbox

• If an exit signal is 
trapped, it does not 
propagate further

21

PidB

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Robust systems

How do you build robust systems?

• You need to ensure
- Necessary functionality always available
- System cleans up when things go wrong

• Must have at least two machines!
- Need distribution

22

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

• Supervisors will start child processes
- Workers
- Supervisors

• Supervisors will monitor
their children
- Through links and trapping exits

• Supervisors can restart the
children when they terminate

Robust systems: Supervision trees

23

Supervisors

Workers

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Robust systems: Monitor processes

• Servers monitoring clients
- Clean-up after then if they crash

• Processes monitoring co-workers
• Groups of co-workers dying together

24

Tuesday, December 4, 12



© 1999-2012 Erlang Solutions Ltd.

Code handling

• Module is the unit of all code handling
- No inter-module dependencies

- Causes problems with static typing

• Have two versions of each module
- Old and current
- Allows controlled take-over

• Well defined behaviour with respect to code
- You KNOW what happens when you call a function
- You KNOW what happens when you load a module

25

Tuesday, December 4, 12


