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Overview

® A bit of history

&M © 1999-2012 Erlang Solutions Ltd.

Tuesday, December 4, 12



Ancient history

e All started in Ericsson Computer Science Lab

e "Everybody” wrote POTS programs to make
phones ring on our MD110 in lab

e 1986: First reference to "Erlang” in paper at Logic
conference describing writing telecom apps in
concurrent logic

e Joe started programming telephony in Smalltalk

based on communicating processes with ideas
from CSP

— and then started using Prolog
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Early history

e Mike and | join the team
e First Erlang implementations of Erlang in Prolog

e We worked out suitable concurrency and error
detection/handling models

— Lots of discussions about this

e Erlang “wanders over” from Prolog to a functional
language

— Unwanted properties of Prolog
— backtracking and logical variables

é/m © 1999-2012 Erlang Solutions Ltd. 4

Tuesday, December 4, 12



Middle ages

e 1990: ISS and “The Movie”

— Erlang first presented to the world
e Need more speed for potential product
e First Erlang VM, the JAM, developed

— Could now implement dynamic code loading

e Erlang more or less now complete as to basics
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Some reflections

e We thought a lot about the problem

e Basic “specification” for Erlang system were taken
from AXE10 and PLEX
— For example need for, and type of, error handling
— Safe language
— BUT use conventional hardware and OS

e Very few initial goals as to details of Erlang

— It just "became” a functional language

— Concurrency and error handling more natural as part
of the language
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Overview

® A bit of philosophy
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Basic principles/requirements

e Lightweight, massive concurrency

— Asynchronous communication
e Process isolation
e Error handling
e Continuous evolution of the system

— Dynamic code updating
e Soft real-time
e Distribution
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Secondary principles/requirements

e Simple high-level language
e 'Safe” language
e Provide tools for building systems, not solutions

— Too limited
— (and we usually got them wrong)
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Overview

® A few examples

SOLUTIONS
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How Erlang does it
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Sequential Language

e Simple functional language
— With a “different” syntax

e [tis safe!

— For example no pointer errors
e It is reasonably high-level

— At least then it was

e Dynamically typed
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Sequential Language

e Typical features of functional languages

— Immutable data

— Immutable variables

— Extensive use of pattern matching
— Recursion rules!
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Concurrency

e Light-weight “green” processes

— Millions of Erlang processes possible on one
machine

— and running in a product

e Processes are used for everything

— Concurrency
— Managing state

e Processes are isolated!
e No global data!
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Concurrency: message passing

e Only provide basic primitives
e Very cheap asynchronous message passing

— Send a message to a process
— Selective receive
— Limits combinatorial explosion in nhon-
deterministic systems

e More complex operations built using send/
receive

— Synchronous messages built from 2 sends
— Error handling complicates matters
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Concurrency: message passing

Pid1l

ey

Pid2

receive
start —> ...
stop —> ...
{Pid, foo} —>

end

Messages are sent using
the Pid ! Msg expression

Received messages are
stored in the process’s
mailbox

Messages are received
using the receive ... end
expression

Messages can be matched
and selectively retrieved

Mailboxes are scanned
sequentially.
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Error handling

ERRORS WILL ALWAYS
OCCUR!




Error handling

The system must never go
down!

Parts may crash and burn
BUT
The system must never go down!
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Error handling

System must be able to

— Detect

— (Contain
— Handle
— Recover from

errors

SOLUTIONS
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Error handling

P1dA

e Links between processes

PidB e EXxit Signals are sent
along links when
processes terminate
abnormally

e The process receiving the
signal will exit

e Then propagate a new
signal to the processes to
which it is linked
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Error handling

e Links between processes

e Exit Signals are sent
along links when
processes terminate
abnormally

e The process receiving the
signal will exit

e Then propagate a new
signal to the processes to
which it is linked
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Error handling

e Processes can trap exit
signals.

e Exit signals will be
converted to messages

e They are saved in the
process mailbox

e If an exit signal is
trapped, it does not
propagate further
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Error handling

e Processes can trap exit

signals.
P1dB e Exit signals will be
@ converted to messages
e They are saved in the

process mailbox

e If an exit signal is
trapped, it does not
propagate further
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Robust systems

How do you build robust systems?

e You nheed to ensure

— Necessary functionality always available
— System cleans up when things go wrong

e Must have at least two machines!
— Need distribution
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Robust systems: Supervision trees

e Supervisors will start child processes

— Workers
— Supervisors

e Supervisors will monitor  sypervisors
their children

— Through links and trapping exits

e Supervisors can restart the
children when they terminate Workers
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Robust systems: Monitor processes

e Servers monitoring clients
— Clean-up after then if they crash

e Processes monitoring co-workers
e Groups of co-workers dying together
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Code handling

e Module is the unit of all code handling

— No inter-module dependencies
— Causes problems with static typing

e Have two versions of each module

— Old and current
— Allows controlled take-over

e Well defined behaviour with respect to code

— You KNOW w
— You KNOW w

nat happens when you call a function

nat happens when you load a module
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