

Neuroevolution Through Erlang

Gene I. Sher
Department of EECS, University of Central Florida

CorticalComputer@gmail.com

Outline

● Introduction
● Creating The Perfect Neural Network Programming

Language
● From Telecommunications Networks To Neural

Networks
● DXNN: A Case Study
● Beyond The Horizon
● Conclusion

Objectives

● Elaborate on why Erlang is such a great fit for the
field of computational intelligence, and its future.

● Discuss the first of such Erlang implemented, general
topology and parameter evolving universal learning
networks.

● Promote Erlang within the Scientific community for
Neural Network, Computational Intelligence, and
Multi-Agent Based System research and applications.

Introduction

● Neural Networks are graph based, distributed, learning systems
● Hardware is moving forward, towards many-core architectures

– Xeon Phi

– Tilera64

– ...

● Other programming languages leave a conceptual gap between themselves
and the problem domain of neural network based computational intelligence

● What is the right programming language architecture?

Biological Neural Network

Biological neuron

● An biological processing
node

● Signal integration
● Spatiotemporal signal

processing
● Frequency encoding
● Biological limitations

Signal Integration

Spatiotemporal Processing

Frequency Encoding

Whether the dendrites experience excitatory or inhibitory signals,
depends not only on the actual signal sent by the presynaptic
neuron, but also on the dendrites, their chemistry, receptors...

20

Plasticity

● Axon extension
● New dendrite branches
● More/less receptors

Artificial Neural Network

Artificial neuron

w0

w2

w1

wi

.

.

.

x0

x1

x2

xi

.

.

.

Aggregate
Apply
Activation
Function

[O]

Output

Input

Weigh each
input

Sum weighted
inputs

Apply AF to
summed
weighted inputs

M0=X0*W0,
M1=X1+W1
…
Mi=Xi*Wi

Aggregation =
M0+M1...+Mi

O =
AF(Aggregation)

The Input is Just a Vector

AF:tanh
Weights:
[0.5,0.2]

[-1,1]
OutputInput

1. Dot product:
DP=(0.5*-1) + (0.2*1)
Threshold = (0*1)

2. Activation strength:
Output = tanh(DP+Threshold)

[-0.29]

Neural Circuit In Action

A

B

C

[X1,X2]

[X1,X2]

[Y]

[1]

[1]

[1]

[O1]

[O2]

Input [X1,X2]: [-1,-1]
A: O1 = -0.9704 = tanh(-1*2.1081+
-1*2.2440 + 1*2.2533)
B: O2 = 0.9922= tanh(-1*3.4964 +
-1*-2.7464 + 1*3.5200)
C: Y = -0.99 = tanh(0.9922*-2.5983
+ -0.9704*2.7354 + 1*2.7255)

Input [X1,X2]: [-1,1]
A: O1 =0.9833 = tanh(-1*2.1081+
1*2.2440 + 1*2.2533)
B: O2 = -0.9914= tanh(-1*3.4964 +
1*-2.7464 + 1*3.5200)
C: Y = 0.99 = tanh(-0.9914*-2.5983
+ 0.9833*2.7354 + 1*2.7255)

Input [X1,X2]: [1,-1]
… C: Y = 0.99

Input [X1,X2]: [1,1]
... C: Y = -0.99

Y = C(A(X1*Wa
1
+ X2*Wa

2
+ 1*Wa

3
)*Wc

1
+

 B(X1*Wb

1
+ X2*Wb

2
+1*Wb

3
)*Wc

2
)

Neural Network

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

-
Neuron

-

L1 L2 L3

3 Layers total

Layer Densities

 3 1 3

...494
Input Output

The randomly evolved NN topology

-1 -0.5 0 0.5 1

...425

...396

...212

...407

Layer Indices

Feedforward Recurrent

Neural Network Based Agent

Learning Vs. Training

● Supervised
 Backpropagation
 ...

● Unsupervised
 Kohonan (Self-organizing) map
 Adaptive Resonance Theory
 Hebbian

 "The general idea is an old one, that any two cells or systems of cells that are repeatedly
active at the same time will tend to become 'associated', so that activity in one facilitates
activity in the other." (Hebb 1949, p. 70)

 Modulated
 Evolutionary
 ….

Error Backpropogation

[w_0]

[x_Bias]

[x_1]

[x_n]

E AF(s)[w_1]

[w_n]

[O]

.

.

.

[w_0]

[x_Bias]

[x_1]

[x_n]

E AF(s)[w_1]

[w_n]

[O]

.

.

.

[w_0]

[x_1]

[x_n]

E AF(s)[w_1]

[w_n]

[O].
.
.

[x_Bias]

.

.

.

e=Xi-Oib = e*AF'(s)

S

dw(i)=n*b*xi

U_Wi = Wi+dw(i)

e = w_n*b

b = e*AF'(s)dw(i)=n*b*xi

b = e*AF'(s)dw(i)=n*b*xi

e = w_1*b

S

S

8

8

7

9 7

5

5

4

1

23

69

6

Hebbian Learning

Sum bO = tanh(Acc)[aw
1
]

[bO][aO]

A B

1 2 3
4

heb

5

1. Neuron A sends the vector signal [aO] to B.
2. Signal aO is weighted with B's synaptic weight aw

1
.

3. The weighted signals (in this case just one) are
summed together to produce the value: Acc.
4. Activation function is applied to Acc to produce B's
output signal bO.
5. B outputs vector signal [bO], while at the same time
uses the Hebbian rule to produce a delta w, and update
the synaptic weight aw

1
.

5

Example: aw
1
 = 0.5, aO = 1, n = 1

1. Neuron A sends the vector signal [1] to B.
2. Signal 1 is weighted with B's synaptic weight 0.5 to
produce Y

1
 = x

1
*aw

1
 = 1*0.5 = 0.5.

3. The weighted signals (in this case just one, Y
1
) are

summed together: Acc = Sum(Y
1
) = 0.5.

4. Activation function tanh is applied to Acc to produce
B's output signal bO = tanh(Acc) = 0.46.
5. B outputs the vector signal [bO] = [0.46], while at the
same time uses the Hebbian rule to produce: dw = 0.46
= 0.46*1, and update the synaptic weight aw

1
. Thus, the

updated aw1 = 0.5 + 0.46 = 0.96. The new synaptic
weight is: aw

1
 = 0.96.

If we now continue running this update rule, with A firing
signals of the same magnitude, 1, the sequence of B's
weight aw

1
 is: 0,5, 0.962, 1.71, 2.64, 3.63, 4.63

The synaptic weight continues to increase in magnitude
over time.

Update Rule: U_W
i
 = W

i
 + n*X

i
*O

Where X
i
 is the presynaptic signal

associated with synaptic weight W
i
, and

where O is the postsynaptic neuron's
output, and n the learning parameter.

Ok ok... But what about the topology, and the
new learning parameters? How do I set them to
the values that produce useful system for some

problem?

Evolutionary Computation

● Based on evolutionary principles
● Stochastic search with a purpose

 Create as many copies of yourself as possible
 Some copies (offspring) will have errors when being copied

 Others are competing for resources
 Push towards finding an advantage
 Survival of the fittest

● Genotype to Phenotype
● Mutation and crossover

Evolutionary Computation Flowchart
Initialize the
population

Create offspring
through

random variation

Evaluate fitness
of each candidate

solution

Apply selection
algorithm

Terminate?

Yes

No

Extracting the most
important parts:

1. Replication.
2. Variation: Mutation.
3. Competition: Those that
are more fit, will survive
and make more mutant
copies of themselves.

Simple Genetic Algorithm Example

Genotypes

A 1001
B 0000
C 1010
D 0101

Phenotypes Genotypes

1110
0100
1010
0101

Phenotypes Genotypes

1110
1111
1010
0010

Simple Mutations

Genotypes

A 1001
B 0000
C 1010
D 0101

Phenotypes Genotypes

1011
1101
1010
0101

Phenotypes Genotypes

1011
1101
1001
1111

Crossover

Gen-1 Gen-2 Gen-3

Gen-1 Gen-2 Gen-3

Phenotypes

Phenotypes

Genetic Programming

*

+ tanh

x0.27x

Tree encoded genotype:

Phenotype: (x+0.27)*tanh(x)

Genetic Programming

*

+ tanh

x0.27x

/

sin pi

x

Agent: A Agent: B

*

+

0.27x

sin

x

Offspring of A & B
created through
crossover
between agent A
and B.

Agent: C

/

sin *

x

Offspring of B,
created by
mutating a clone
of B.

Agent: D

e x

Pi mutated
to *

New leaf
e added

New leaf
x added

Evolutionary Computation Approaches

● Genetic Algorithms (John Holland, 73-75)
 Population of fixed length genotypes, bit strings, evolved through perturbation/crossing

● Genetic Programming (John Koza, 92)
 Variable sized chromosome based programs represented as treelike structures, with specially

crafted genetic operators

● Evolutionary Strategies (Ingo Rechenberg, 73)
 Normal distribution based, adaptive perturbations (self-adaptation)

● Evolutionary Programming (L. & D. Fogel, 63)
 Like ES, but for evolution of state transition tables for finite-state machines (FSMs)

Towards Neuroevolution

*

+ X

x pi

+

0.1 tanh

x

x

0.1

pi

tanh

+ *

+

Leafs are inputs

Roots are inputs

Inputs Outputs

Tree Encoded Graph Encoded

N

N N

N

Input_1

Input_2

Output_2

Input_3

Output_1

Neural Network

Different sides of the same coin

*

+ X

x pi

+

0.1 tanh

x

x

0.1

pi

tanh

+ *

+

Leafs are inputs

Roots are inputs

Inputs Outputs

Tree Encoded Graph Encoded

In1

In2

In3

tanh

+ *

+

Inputs Outputs

In1

In2

In3

diode

OR AND

OR

Inputs Outputs

Graph Circuit

In Search For A Neural Network
Programming Language

Hardware is advancing, scaling outward,
perfect for distributed and concurrent
systems; Software is lagging behind

Other Programming/Scripting Languages

● Standard procedural and object oriented programming languages
do not have the perfect architectures for NN based systems.
– C/C++
– Java
– Python
– Perl

● What are the needed features to remove the conceptual gap
between the programming language architecture and the
distributed NN based computational intelligence problem domain?

Creating The Perfect Neural Network
Programming Language

A list of features that a neural network based computational intelligence system needs, as quoted from the list
made by Bjarne Dacker [1], is as follows:̈

1. The system must be able to handle very large numbers of concurrent activities.

2. Actions must be performed at a certain point in time or within a certain time.

3. Systems may be distributed over several computers.

4. The system is used to control hardware.

5. The software systems are very large.

6. The system exhibits complex functionality such as, feature interaction.

7. The systems should be in continuous operation for many years.

8. Software maintenance (reconfiguration, etc) should be performed without stopping the system.

9. There are stringent quality, and reliability requirements.

10. Fault tolerance

Surprisingly enough, Dacker was not talking about a neural network based general computational intelligence ̈
systems when he made this list, he was talking about a telecom switching systems.

[1] Bjarne Dacker. Concurrent functional programming for telecommunications: A case study of technology introduction. November 2000. Licentiate ̈
Thesis.

Erlang:
From Telecom Networks

To Neural Networks

● A list of features
● Architectural 1:1 mapping, no conceptual gaps

Erlang Features

The features that Erlang possesses, as quoted from Armstrong's thesis [2], is as follows:

“1. Encapsulation primitives — there must be a number of mechanisms for limiting the consequences of an error. It should be possible to
isolate processes so that they cannot damage each other.

2. Concurrency — the language must support a lightweight mechanism to create parallel process, and to send messages between the
processes. Context switching between process, and message passing, should be efficient. Concurrent processes must also time-share
the CPU in some reasonable manner, so that CPU bound processes do not monopolize the CPU, and prevent progress of other
processes which are 'ready to run.'

3. Fault detection primitives — which allow one process to observe another process, and to detect if the observed process has
terminated for any reason.

4. Location transparency — If we know the PId of a process then we should be able to send a message to the process.

5. Dynamic code upgrade — It should be possible to dynamically change code in a running system. Note that since many processes will
be running the same code, we need a mechanism to allow existing processes to run “old” code, and for “new” processes to run the
modified code at the same time.

With a set of libraries to provide:

6. Stable storage — this is storage which survives a crash.

7. Device drivers — these must provide a mechanism for communication with the outside world.

8. Code upgrade — this allows us to upgrade code in a running system.

9. Infrastructure — for starting, and stopping the system, logging errors , etc.”

[2] Joe Armstrong, “Making reliable distributed systems in the presence of software errors ” A Dissertation submitted to the Royal
Institute of Technology Stockholm, Sweden

The Architectural 1:1 Mapping

Process

Process

Process

Process

Process

Process

Process

Process

Process,
driver for:
Sensor-1
“Camera”

Process,
Driver for:
Sensor-2
“Sonar”

Process,
driver for:
Actuator-1
“Camera
pan/tilt”

Process,
driver for:
Actuator-2
“Steering”

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Sensor-1
“Camera”

Sensor-2
“Sonar”

Actuator-1
“Camera
pan/tilt”

Actuator-2
“Steering”

1:1 Mapping

Neural Network
Based
Computational
Intelligence
System,
interfacing with a
robotic body

Representation of
the system in
Erlang

DXNN: A Case Study

● The evolutionary loop
● NN based agent architecture
● Platform architecture
● Neuron Architecture
● Genotype Encoding
● Implementing Mutations
● Incorporating Modularity
● Handbook of Neuroevolution Through Erlang

Memetic Algorithm Based TWEANN

Seed NN population

Apply to
problem

Calculate fitness
scores

Select fit
organisms

Create
offspring

Local Search:
 Hill Climber

The Learning algorithm is as follows:
0. Create seed population of NN agents.
1. Spawn (convert genotype to phenotype) a
population of agents.
2. Each agent interacts with the environment or
some problems.
3. Each agent gets a fitness evaluation.
4. A process called exoself perturbs agent's
synaptic weights.
5. Applies it to the problem again.
6. And if its performance increases, then this new
synaptic weight combination is considered best,
and we again perturb the synaptic weights. If the
new performance is worse, then we revert to
previous best, and perturb the synaptic weights.
7. Eventually all agents have had their synaptic
weights tuned, and the fitness scores of the
agents is compared.
8. Fitter agents allowed to create more offspring.
9. Goto: 1

Parametric Mutation

● Parameter lists available to the specie:
– Plasticity_List = [none, hebb...]
– Activation_Function_List = [none, tanh, sin, gauss...]
– …

● Let different species have access to different lists of parameters.
● When you create a new function, simply add its function name to

the list, without taking the system offline... offspring agents will
begin incorporating the new features.

● Choosing which mutation operators to apply:
– [mutate:MO(Agent_Id) || MO ← [MOperator || {MOperator, Prob} ← Operators, Prob <random:uniform()]]

Stochastic Hill Climber

AF:tanh
Weights:

[W]

1. [1]
2. [-1]

Output

Input

tanh(1*W)
Initial W = 1
I want: Output == 0

1. Output1 = tanh(1*1) = 0.76
 Output2 = tanh(1*-1) = -0.76

2. Weight Perturbation
Perturbation = -0.5
Try W = 0.5 = 1 - 0.5
Output1 = tanh(0.5*1) = 0.46
Output2 = tanh(0.5*-1) = -0.46
That's closer! New W = 0.5

3. Weight Perturbation
Perturbation = +0.2
Try W = 0.7 = 0.5 + 0.2
Output1 = tanh(0.7*1) = 0.60
Output2 = tanh(0.7*-1) = -0.60
Not as good as before, New W = 0.5

4. Weight Perturbation
Perturbation = -0.5
Try W = 0 = 0.5 - 0.5
Output1 = tanh(0*1) = 0 !!!
Output2 = tanh(0*-1) = 0 !!!

The right weight is 0.

Topological Mutation Operators

A

sensor

F

D B

Base Neural Network actuator

A

sensor

F

D B

actuator

A

sensor

F

D B

actuator

A

sensor

F

D B

actuator

A

sensor

F

D B

actuator

XX
Add neuron
x in parallel

Splice: Add
neuron x,
reconnect
D & B
through it

Add
connection
from sensor
to B

Add recurrent
connections
from F to A,
and B to D

Instead of evolving a single NN, let's
evolve a population

Input: [-1,-1]
Output: cos(-4.64*-1 + -4.79*-1) = -0.9999
Input: [-1, 1]
Output: cos(-4.64*-1 + -4.79*1) = 0.9889
Input: [1,-1]
Output: cos(-4.64*1 + -4.79*-1) = 0.9889
Input: [1, 1]
Output: cos(-4.64*1 + -4.79*1) =-0.9999

tanh Xor_
Output

Xor_
Input sin Xor_

Output
Xor_
Input abs Xor_

Output
Xor_
Input

Seed Population

cos Xor_
Output

Xor_
Input

W1: -0.1 W2: 0.23 W1: -1 W2: 2 W1: 0.11 W2: 0.53

sin

Xor_
Output

Xor_
Input

W1: 0.21 W2: 0.53

cos Xor_
Output

Xor_
Input

W1: -2 W2: -1

Fit: 70

tanh

sin Xor_
Output

Xor_
Input

W1: -1 W2: 2

W1: -1 W2: 2

cos Xor_
Output

Xor_
Input

W1: -2 W2: -1

cos Xor_
Output

Xor_
Input

W1: -4.64 W2: -4.79

cos Xor_
Output

Xor_
Input

W1: -2 W2: 0

Population champion

1 2 3

24 5

576

7

Neural Network Agent Architecture

N

Cx

N

N

N

S A

Environment

sync

sync

Percepts Actions

exoself

NN System

* Monitor signals
* Fitness
* Selfmod. requests

* Weight optimization
* Weight restoration
* Genotype backup

The Infomorph's Phenotype (Substrate)

Cx

S

 A

Environment

sync
sync

Percepts Actions

Substrate Encoded
NN System

* Monitor signals
* Fitness
* Selfmod. requests

* Weight optimization
* Weight restoration
* Genotype backup

NN

Substrate

exo-
self

Substrate Encoding

Substrate

Connected Neurode coordinates:
 [X1,Y1,Z1,X2,Y2,Z2]

Synaptic Weight: [W]

Output
Input:
Gray = -1
Dark Gray = 0
Black = 1

X

Y

Z
1-1 0

-1

0

1

1
0

-1

Not all connections are shown

NN

Substrate Encoding (continued)

Substrate

Connected Neurode coordinates:
[X1,Y1,X2,Y2]

Synaptic Weight: [W]

X

Y
1-1 0

1

0

-1

B

Sensor Actuator

Sensor Actuator

A

Substrate

Not all
connections
are shown

R

Θ

Connected Neurode coordinates:
[R1,Θ1,R2,Θ2]

Synaptic Weight: [W]

X

Y

Substrate Encoding (continued)

Fully connected 3d substrate topology

X

Y

Z
1-1 0

-1

0

1

1
0

-1

Not all connections are shown X

Y

Z
1-1 0

-1

0

1

1
0

-1

Not all connections are shown

“Freeform” 3d substrate topology

NN
Neurode coordinates:
[X1,Y1,Z1,X2,Y2,Z2]

Synaptic weight: [W]
NN

Neurode coordinates:
[X1,Y1,Z1,X2,Y2,Z2]

Synaptic weight and
expression: [W,E]

A B

An evolving NN population

NN
Agent

NN
Agent

NN
Agent

Population
Monitor

NN
Agent

NN
Agent

......

60

Platform Architecture

Scape & Morphology

Percepts

Actions

NN NN NNPercepts

Actions

Percepts

Actions

Fitness Gage

Public Scape

Percepts

Actions

NN1 NN2Percepts

Actions

Cart

Pole balancing
simulation

Private Scape

Fitness Gage

Cart

Pole balancing
simulation

Private Scape

Fitness Gage

This is how my NN based agents
interact with problems/simulated
environments.

Morphology Specification
flatlander(actuators)->

Movement = [#actuator{name=two_wheels,id=cell_id,format=no_geo,tot_vl=2,parameters=[2]}],
Cloning = [#actuator{name=create_offspring,id=cell_id,format=no_geo,tot_vl=1,parameters=[1]}],
Weapons = [#actuator{name=spear,id=cell_id,format=no_geo,tot_vl=1,parameters=[1]}],
Communications = [#actuator{name=speak,id=cell_id,format=no_geo,tot_vl=1,parameters=[1]}],
Movement++Weapons++Communications;

flatlander(sensors)->
Pi = math:pi(),
Distance_Scanners =

[#sensor{name=distance_scanner,id=cell_id,format=no_geo,tot_vl=Density,parameters=[Spread,Density,ROffset]} ||
Spread<-[Pi/2],Density<-[5], ROffset<-[Pi*0/2]],

Color_Scanners =
[#sensor{name=color_scanner,id=cell_id,format=no_geo,tot_vl=Density,parameters=[Spread,Density,ROffset]} ||

Spread <-[Pi/2], Density <-[5], ROffset<-[Pi*0/2]],
Commmunications=[#sensor{name=Name,id=cell_id,format=no_geo,tot_vl=Density,parameters=[Spread,Density,ROffset]} ||

Name <- [sound_scanner], Spread <-[Pi/2], Density <-[10], ROffset<-[Pi*0/2]],
Distance_Scanners++Communications++Color_Scanners.

Neural Processing

w0

w2

w1

wi

.

.

.

x0

x1

x2

xi

.

.

.

Signal Integrator Activation
Function

Output

Input Weights

Postprocessor

Plasticity

Preprocessor

[none, normalizer...] [dot, dif, mult...] [none, tanh, sin...] [none, threshold...]

[none, hebb...]

Output = postproc:PoF(af:AFF(sigint:SIF(preproc:PrF(Input),Weights))),
Updated_W = plasticity:PlastF(Input,Output,Weights).

StandardOutput = postproc:none(af:tanh(sigint:dot(preproc:none(Input),Weights))),
Updated_W = plasticity:none(Input,Output,Weights).

ART_N = postproc:threshold(af:none(sigint:diff(preproc:normalizer(Input),Weights))),
Updated_W = plasticity:hebb(Input,Output,Weights).

25

loop(S,ExoSelf_PId,[ok],[ok],SIAcc,MIAcc)->
{PFName,PFParameters} = PF = S#state.pf,
AF = S#state.af,
AggrF = S#state.aggrf,
Ordered_SIAcc = lists:reverse(SIAcc),
SI_PIdPs = S#state.si_pidps_current,
SOutput = sat(functions:AF(signal_aggregator:AggrF(Ordered_SIAcc,SI_PIdPs)),?OUTPUT_SAT_LIMIT),
Output_PIds = S#state.output_pids,
[Output_PId ! {self(),forward,[SOutput]} || Output_PId <- Output_PIds],
case PFName of

none ->
U_S=S;

_ ->
Ordered_MIAcc = lists:reverse(MIAcc),
MI_PIdPs = S#state.mi_pidps_current,
MAggregation_Product = sat(signal_aggregator:dot_product(Ordered_MIAcc,MI_PIdPs),?SAT_LIMIT),
MOutput = functions:tanh(MAggregation_Product),
U_SI_PIdPs = plasticity:PFName([MOutput|PFParameters],Ordered_SIAcc,SI_PIdPs,SOutput),
U_S=S#state{

si_pidps_current = U_SI_PIdPs
}

end,
SI_PIds = S#state.si_pids,
MI_PIds = S#state.mi_pids,
neuron:loop(U_S,ExoSelf_PId,SI_PIds,MI_PIds,[],[]);

loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc)->
receive

{SI_PId,forward,Input}->
loop(S,ExoSelf_PId,SI_PIds,[MI_PId|MI_PIds],[{SI_PId,Input}|SIAcc],MIAcc);

{MI_PId,forward,Input}->
loop(S,ExoSelf_PId,[SI_PId|SI_PIds],MI_PIds,SIAcc,[{MI_PId,Input}|MIAcc]);

{ExoSelf_PId,weight_backup}->
U_S=case S#state.heredity_type of

darwinian ->
S#state{

si_pidps_backup=S#state.si_pidps_bl,
mi_pidps_backup=S#state.mi_pidps_current

};
lamarckian ->

S#state{
si_pidps_backup=S#state.si_pidps_current,
mi_pidps_backup=S#state.mi_pidps_current

}
end,
loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);

{ExoSelf_PId,weight_restore}->
U_S = S#state{

si_pidps_bl=S#state.si_pidps_backup,
si_pidps_current=S#state.si_pidps_backup,
mi_pidps_current=S#state.mi_pidps_backup

},
loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);

{ExoSelf_PId,weight_perturb,Spread}->
Perturbed_SIPIdPs=perturb_IPIdPs(Spread,S#state.si_pidps_backup),
Perturbed_MIPIdPs=perturb_IPIdPs(Spread,S#state.mi_pidps_backup),
U_S=S#state{

si_pidps_bl=Perturbed_SIPIdPs,
si_pidps_current=Perturbed_SIPIdPs,
mi_pidps_current=Perturbed_MIPIdPs

},
loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);

{ExoSelf_PId,reset_prep}->
neuron:flush_buffer(),
ExoSelf_PId ! {self(),ready},
RO_PIds = S#state.ro_pids,
receive

{ExoSelf_PId, reset}->
fanout(RO_PIds,{self(),forward,[?RO_SIGNAL]})

end,
loop(S,ExoSelf_PId,S#state.si_pids,S#state.mi_pids,[],[]);

{ExoSelf_PId,get_backup}->
NId = S#state.id,
ExoSelf_PId ! {self(),NId,S#state.si_pidps_backup,S#state.mi_pidps_backup},
loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);

{ExoSelf_PId,terminate}->
ok

end.

DXNN Neural Process
In under 80 lines

Mnesia as Storage for Genotypes

● Robust and safe
● Tuple friendly
● Easy atomic mutations

 If any part of the mutation fails, the whole mutation is just
retracted automatically

Genotype Record Relations

-record(agent,{id, encoding_type, generation, population_id, specie_id, cx_id, fingerprint, constraint, evo_hist=[], fitness=0, innovation_factor=0, pattern=[],
tuning_selection_f, annealing_parameter, tuning_duration_f, perturbation_range, mutation_operators,tot_topological_mutations_f,heredity_type,substrate_id}).

-record(cortex, {id, agent_id, neuron_ids=[], sensor_ids=[], actuator_ids=[]}).

-record(sensor,{id,name,type,cx_id,scape,vl,fanout_ids=[],generation,format,parameters,gt_parameters,phys_rep,vis_rep,pre_f,post_f}).

-record(actuator,{id,name,type,cx_id,scape,vl,fanin_ids=[],generation,format,parameters,gt_parameters,phys_rep,vis_rep,pre_f,post_f}).

-record(neuron, {id, generation, cx_id, pre_processor,signal_integrator,af, post_processor, pf, aggr_f, input_idps=[], input_idps_modulation=[], output_ids=[], ro_ids=[]}).

-record(population,{id, polis_id, specie_ids=[], morphologies=[], innovation_factor, evo_alg_f, fitness_postprocessor_f, selection_f, trace=#trace{}}).

-record(specie,{id, population_id, fingerprint, constraint, agent_ids=[], dead_pool=[], champion_ids=[], fitness, innovation_factor={0,0},stats=[]}).

Genotype
-record(agent,{id, encoding_type, generation, population_id, specie_id, cx_id, fingerprint, constraint, evo_hist=[], fitness=0, innovation_factor=0, pattern=[],

tuning_selection_f, annealing_parameter, tuning_duration_f, perturbation_range, mutation_operators,tot_topological_mutations_f,heredity_type,substrate_id}).
-record(cortex, {id, agent_id, neuron_ids=[], sensor_ids=[], actuator_ids=[]}).
-record(substrate, {id, agent_id, densities, linkform, plasticity=none, cpp_ids=[],cep_ids=[]}).
-record(sensor,{id,name,type,cx_id,scape,vl,fanout_ids=[],generation,format,parameters,gt_parameters,phys_rep,vis_rep,pre_f,post_f}).
-record(actuator,{id,name,type,cx_id,scape,vl,fanin_ids=[],generation,format,parameters,gt_parameters,phys_rep,vis_rep,pre_f,post_f}).
-record(neuron, {id, generation, cx_id, pre_processor,signal_integrator,af, post_processor, pf, aggr_f, input_idps=[], input_idps_modulation=[], output_ids=[], ro_ids=[]}).

-record(population,{id, polis_id, specie_ids=[], morphologies=[], innovation_factor, evo_alg_f, fitness_postprocessor_f, selection_f, trace=#trace{}}).
-record(specie,{id, population_id, fingerprint, constraint, agent_ids=[], dead_pool=[], champion_ids=[], fitness, innovation_factor={0,0},stats=[]}).
-record(avatar,{id,sector,morphology,energy=0,health=0,food=0, age=0, kills=0, loc, direction, r, mass, objects=[], state,actuators,sensors}).

[{agent,....”ids and general agent information”...},
{cortex,{{origin,7.427859664144057e-10},cortex},
 test,
 [{{0.0,7.427859664110573e-10},neuron}],
 [{{-1,7.427859664112002e-10},sensor}],
 [{{1,7.427859664111848e-10},actuator}]}
{sensor,{{-1,7.427859664112002e-10},sensor},
 pb_GetInput,standard,
 {{origin,7.427859664144057e-10},cortex},
 {private,pb_sim},
 3,
 [{{0.0,7.427859664110573e-10},neuron}],
 0,undefined,
 [3],
 undefined,undefined,undefined,undefined,undefined}

{neuron,{{0.0,7.427859664110573e-10},neuron},
 0,
 {{origin,7.427859664144057e-10},cortex},
 undefined,undefined,tanh,undefined,
 {none,[]},
 dot_product,
 [{{{-1,7.427859664112002e-10},sensor},
 [{0.15516645684354882,[]},
 {0.4631980138130717,[]},
 {0.4869749390984265,[]}]}],
 [],
 [{{1,7.427859664111848e-10},actuator}],
 []}
{actuator,{{1,7.427859664111848e-10},actuator},
 pb_SendOutput,standard,
 {{origin,7.427859664144057e-10},cortex},
 {private,pb_sim},
 1,
 [{{0.0,7.427859664110573e-10},neuron}],
 0,undefined,
 [with_damping,1],
 undefined,undefined,undefined,undefined,undefined}]

Recent Updates

● Hall-Of-Fame/Archiving
● Multi-Objective Optimization
● Novelty Search
● Neural-Micro-Circuit
● Adaptive-Resonance-Theory

Larger Basic Building Blocks:
Neural-Micro-Circuits

X0

X1

X2

Xn

.

.

.

AF

AF

.

.

.
AF

Neural-Micro-Circuit

AF = Activation
Function.

An AF can be either a
Tanh, an RBF, or a Sin.

NMC Node
create_circuit(IVL,Densities,AF)->create_circuit(IVL,Densities,AF,[]).
create_circuit(IVL,[VL|Densities],AF,Acc)->

{Weights,Parameters} = case AF of
rbf ->

{[random:uniform()-0.5|| _<-lists:seq(1,IVL)],[random:uniform()]};
_ ->

{[random:uniform()-0.5|| _<-lists:seq(1,IVL)],[]}
end,
Layer=[#neurode{id=technome_constructor:generate_UniqueId(),af=AF,weights=Weights} || _<-lists:seq(1,VL)],
create_circuit(length(Layer),Densities,AF,[Layer|Acc]);

create_circuit(_IVL,[],_AF,Acc)->
lists:reverse(Acc).

calculate_output_std(IVector,[Cur_NeurodeLayer|Circuit])->
U_IVector = [calculate_neurode_output_std(IVector,N#neurode.weights,N#neurode.bias,0) || N <- Cur_NeurodeLayer],
calculate_output_std(U_IVector,Circuit);

calculate_output_std([Output],[])->
Output.

calculate_neurode_output_std([I|IVector],[Weight|Weights],Bias,Acc)->
calculate_neurode_output_std(IVector,Weights,Bias,I*Weight+Acc);

calculate_neurode_output_std([],[],undefined,Acc)->
functions:tanh(Acc);

calculate_neurode_output_std([],[],Bias,Acc)->
functions:tanh(Acc+Bias).

Distributed Substrates

Sub

Cx

S

 A

syncsync

Substrate Encoded
NN System

* Monitor signals
* Fitness
* Selfmod. requests

* Weight optimization
* Weight restoration
* Genotype backupexo-

self

Sub

Sub

Sub

Sub

 A

NN

ARTMAP Agent

Cx

S
 A

Environment

syncsync

Percepts Actions

exoself

N

N

N

Class-1 Class-N. . .

Distance Pseudodistance

CLASS_LIST

Crystallization/ADFs
Automatically Defined Functions (ADFs), subgraphs not mutated in a long
while, become treated as units.

ADF_1

Generation: N

Generation: N+1

Generation: N+2

Modular NNs

Camera

Distance_Sensor

Chemical_Sensor

Pressure_Sensor

EM_Analyzer

Camera_PanTilt

DS_PanTilt

CS_PanTilt

PS_PanTilt

EMA_PanTilt

ServoMotors_Controller

Piezoelectric_Transducer

Hopfield
Network

Kohonen
Network

Neuromodulator

ART_NN

Substrate
Encoded

NN

Static
Recurrent

NN

The Pole Balancing Benchmark

Percepts

Actions

Agent Agent
Percepts

Actions

Cart

Private Scape

Cart

Private Scape

A. Single pole balancing simulation B. Double pole balancing simulation

Double Pole Balancing Benchmark
Method Without-Damping With-Damping
RWG 415209 1232296

SANE 262700 451612

CNE 76906 87623

ESP 7374 26342

NEAT --- 6929

CMA-ES* 3521 6061

CoSyNE* 1249 3416

DXNN (old) 2359 2313
DXNN 1289 1830

DXNN:NMC 1618 1703

Benchmark data taken from: Faustino “Gomez, Jurgen Schmidhuber, Risto Miikkulainen,: Accelerated Neural
Evolution through Cooperatively Coevolved Synapses. Journal of Machine Learning Research 9 (2008) 937-965”

Artificial Life

● Simple Food Gathering
● Dangerous Food Gathering
● Predator Vs. Prey

NN
Agent

NN
Agent

NN
Agent

Population
Monitor

NN
Agent

NN
Agent

Flatland

PredatorPrey

Plant

Poison

90 Degree Coverage
Resolution: 5 Sensors Available:

* Range Sensor:
Resolution-5

* Color Sensor:
Resolution-5

Actuators Available:
* Differential Drive

No
intersection

 -1 -0.5 0 0.5 1

Color to floating point encoding:

+500 Energy

-2000 Energy

Simple Food
Gathering

Dangerous
Food Gathering

Predator Vs. Prey

Forex Trading

● Trading using sliding window
● Trading using chart window

1.2 1.3 1.35 1.2 1.5 1.4 1.4 1.5 1.4 ...

1.1
1.2

1.3

1.4

1.5

1.6

Private Scape: fx_sim

Current price

{From,sense,TableNa...

{From,sense,internals...

{From,trade...

Account:
Net_Worth:X

Position:Y
Order:Z

...

Receive

Agent

6

2

12

11
15

1
7

9

10

4

3

13

5

8

14

16
17

18

The Substrate Topology
A four dimensional substrate

Connected Neurode coordinates:
 [X1,Y1,Z1,K1,X2,Y2,Z2,K2] Synaptic Weight: [W]

Not all connections are shown

K

Z

Y

X

Z

Y

X

Z

Y

X

Price Chart

-1 0 1

[Position,Entry,PercentageChange]

NN

Forex Trading Results
TrnAvg TrnBst TstWrst TstAvg TstStd TstBst Price Vector Sensor Type

540 550 225 298 13 356 [SlidWindow5]

523 548 245 293 16 331 [SlidWindow10]

537 538 235 293 15 353 [SlidWindow20]

525 526 266 300 9 353 [SlidWindow50]

548 558 284 304 14 367 [SlidWindow100]

462 481 214 284 32 346 [ChartPlane5X10]

454 466 232 297 38 355 [ChartPlane5X20]

517 527 180 238 32 300 [ChartPlane10X10]

505 514 180 230 26 292 [ChartPlane10X20]

546 559 189 254 29 315 [ChartPlane20X10]

545 557 212 272 36 328 [ChartPlane20X20]

532 541 235 279 23 323 [ChartPlane50X10]

558 567 231 270 20 354 [ChartPlane50X20]

538 545 256 310 37 388 [ChartPlane100x10]

311 N/A N/A 300 N/A N/A Buy & Hold

N/A 704 N/A N/A N/A 428 Max Possible

Generalization Results

Epitope Prediction

Epitope Prediction Platform

Beyond The Horizon

● Trivial to distribute a NN over the Internet
● This adds an enormous amount of robustness and computational power
● Erlang's natural code hot-swapping ability, potentially allows neural networks to rewrite

their own source code, without going off-line If something goes wrong, if the rewriting
causes a crash to the network, the exoself can recover the system...

● Building modular neural networks, composed of very different structures, becomes
trivial

● Other scientific applications in the multi-agent based field
– Cyberwarfare
– Circuit
– Economic multiagent based simulations
– ...

Cyberwarfare

NN NN NN

Neuroevolutionary Platform

Population
Monitor,

NN Sorter &
Mutator

.

network

Scape

Evolving UCAV Neurocontrollers

NN

Scape

Population
Monitor,

NN Sorter &
Mutator

NN NN

Scape

NN NN

Scape

NN NN

Scape

NN

1a
1b 1a 2b Na

1b Na
Nb

Every NN from Species 'a'
is put against every NN
from Species 'b'. In this
manner, after all the NNs
have battled, each NN will
have a complete fitness
score.

......

Conclusion & Summary

● Common programming language do not have the architecture that is perfect for
modern Neural Network based Computational Intelligence

● A perfect functional programming language already exists, it is Erlang, the
quintessential NN programming language, with a 1:1 mapping.

● The first of fully general Topology and Parameter Evolving Universal Learning
Networks in Erlang has been created, called DXNN.

● New horizons have opened up that can now be explored with ease. Experiments
within self recovery, global distribution of a NN, self rewriting... are all easily
accomplished due to the features Erlang possesses

● It is essential for the scientific community to begin utilizing this language, as the
hardware will only continue to scale outwards, and wheras languages like Scala
are Java extensions, Erlang was built from the start for robustness, scalability,
distribution...

References

● Joe Armstrong, “Making reliable distributed systems in the presence of
software errors ” A Dissertation submitted to the Royal Institute of
Technology Stockholm, Sweden

● Bjarne Dacker, “Concurrent functional programming for ̈
telecommunications: A case study of technology introduction”
November 2000. Licentiate Thesis

● Gene Sher (2012), “Handbook of Neuroevolution Through Erlang”
Springer-Verlag, New York

Thank You

Questions?

