Neuroevolution Through Erlang

Gene I. Sher Department of EECS, University of Central Florida CorticalComputer@gmail.com

Outline

- Introduction
- Creating The Perfect Neural Network Programming Language
- From Telecommunications Networks To Neural Networks
- DXNN: A Case Study
- Beyond The Horizon
- Conclusion

Objectives

- Elaborate on why Erlang is such a great fit for the field of computational intelligence, and its future.
- Discuss the first of such Erlang implemented, general topology and parameter evolving universal learning networks.
- Promote Erlang within the Scientific community for Neural Network, Computational Intelligence, and Multi-Agent Based System research and applications.

Introduction

- Neural Networks are graph based, distributed, learning systems
- Hardware is moving forward, towards many-core architectures
 - Xeon Phi
 - Tilera64
 - ...
- Other programming languages leave a conceptual gap between themselves and the problem domain of neural network based computational intelligence
- What is the right programming language architecture?

Biological Neural Network

Biological neuron

A multipolar neuron (Ex. spinal motor neuron)

- An biological processing node
- Signal integration
- Spatiotemporal signal processing
- Frequency encoding
- Biological limitations

Signal Integration

Spatiotemporal Processing

Frequency Encoding

Whether the dendrites experience excitatory or inhibitory signals, depends not only on the actual signal sent by the presynaptic neuron, but also on the dendrites, their chemistry, receptors...

Plasticity

- Axon extension
- New dendrite branches
- More/less receptors

Artificial Neural Network

Artificial neuron

The Input is Just a Vector

Neural Circuit In Action

Input [X1,X2]: [-1,-1]

A: O1 = -0.9704 = tanh(-1*2.1081+ -1*2.2440 + 1*2.2533) B: O2 = 0.9922= tanh(-1*3.4964 + -1*-2.7464 + 1*3.5200) C: Y = -0.99 = tanh(0.9922*-2.5983 + -0.9704*2.7354 + 1*2.7255)

Input [X1,X2]: [-1,1]

A: O1 =0.9833 = tanh(-1*2.1081+ 1*2.2440 + 1*2.2533) B: O2 = -0.9914= tanh(-1*3.4964 + 1*-2.7464 + 1*3.5200) C: Y = **0.99** = tanh(-0.9914*-2.5983 + 0.9833*2.7354 + 1*2.7255)

Input [X1,X2]: [1,-1] ... C: Y = 0.99

Input [X1,X2]: [1,1] ... C: Y = -0.99

 $Y = C(A(X1*Wa_1 + X2*Wa_2 + 1*Wa_3)*Wc_1 + B(X1*Wb_1 + X2*Wb_2 + 1*Wb_3)*Wc_2)$

Neural Network

Feedforward

Recurrent

Neural Network Based Agent

Learning Vs. Training

- Supervised
 - Backpropagation

•••

- Unsupervised
 - Kohonan (Self-organizing) map
 - Adaptive Resonance Theory
 - Hebbian
 - "The general idea is an old one, that any two cells or systems of cells that are repeatedly active at the same time will tend to become 'associated', so that activity in one facilitates activity in the other." (Hebb 1949, p. 70)
 - Modulated
 - Evolutionary

.

Error Backpropogation

Hebbian Learning

1. Neuron A sends the vector signal [aO] to B.

2. Signal aO is weighted with B's synaptic weight aw₁.

3. The weighted signals (in this case just one) are summed together to produce the value: Acc.

4. Activation function is applied to Acc to produce B's output signal bO.

5. B outputs vector signal [bO], while at the same time uses the Hebbian rule to produce a delta w, and update the synaptic weight aw_1 .

Update Rule: $U_W_i = W_i + n^*X_i^*O$ Where X_i is the presynaptic signal associated with synaptic weight W_i , and where O is the postsynaptic neuron's output, and n the learning parameter. Example: aw₁ = 0.5, aO = 1, n = 1

1. Neuron A sends the vector signal [1] to B.

2. Signal 1 is weighted with B's synaptic weight 0.5 to produce $Y_1 = x_1^* aw_1 = 1^* 0.5 = 0.5$.

3. The weighted signals (in this case just one, Y_1) are summed together: Acc = Sum(Y_1) = 0.5.

4. Activation function \tanh is applied to Acc to produce B's output signal bO = $\tanh(Acc) = 0.46$.

5. B outputs the vector signal [bO] = [0.46], while at the same time uses the Hebbian rule to produce: dw = 0.46 = 0.46*1, and update the synaptic weight aw₁. Thus, the updated aw₁ = 0.5 + 0.46 = 0.96. The new synaptic

weight is: **aw**₁ = **0.96**.

If we now continue running this update rule, with A firing signals of the same magnitude, 1, the sequence of B's weight aw_1 is: **0,5, 0.962, 1.71, 2.64, 3.63, 4.63** The synaptic weight continues to increase in magnitude over time. Ok ok... But what about the topology, and the new learning parameters? How do I set them to the values that produce useful system for some problem?

Evolutionary Computation

- Based on evolutionary principles
- Stochastic search with a purpose
 - Create as many copies of yourself as possible
 - Some copies (offspring) will have errors when being copied
 - Others are competing for resources
 - Push towards finding an advantage
 - Survival of the fittest
- Genotype to Phenotype
- Mutation and crossover

Evolutionary Computation Flowchart

Extracting the most important parts:

 Replication.
Variation: Mutation.
Competition: Those that are more fit, will survive and make more mutant copies of themselves.

Simple Genetic Algorithm Example

Simple Mutations

Genetic Programming

Genetic Programming

Evolutionary Computation Approaches

- Genetic Algorithms (John Holland, 73-75)
 - Population of fixed length genotypes, bit strings, evolved through perturbation/crossing
- Genetic Programming (John Koza, 92)
 - Variable sized chromosome based programs represented as treelike structures, with specially crafted genetic operators
- Evolutionary Strategies (Ingo Rechenberg, 73)
 - Normal distribution based, adaptive perturbations (self-adaptation)
- Evolutionary Programming (L. & D. Fogel, 63)
 - Like ES, but for evolution of state transition tables for finite-state machines (FSMs)

Towards Neuroevolution

Different sides of the same coin

In Search For A Neural Network Programming Language

Hardware is advancing, scaling outward, perfect for distributed and concurrent systems; Software is lagging behind

Other Programming/Scripting Languages

- Standard procedural and object oriented programming languages do not have the perfect architectures for NN based systems.
 - C/C++
 - Java
 - Python
 - Perl
- What are the needed features to remove the conceptual gap between the programming language architecture and the distributed NN based computational intelligence problem domain?

Creating The Perfect Neural Network Programming Language

A list of features that a neural network based computational intelligence system needs, as quoted from the list made by Bjarne Däcker [1], is as follows:

- 1. The system must be able to handle very large numbers of concurrent activities.
- 2. Actions must be performed at a certain point in time or within a certain time.
- 3. Systems may be distributed over several computers.
- 4. The system is used to control hardware.
- 5. The software systems are very large.
- 6. The system exhibits complex functionality such as, feature interaction.
- 7. The systems should be in continuous operation for many years.
- 8. Software maintenance (reconfiguration, etc) should be performed without stopping the system.
- 9. There are stringent quality, and reliability requirements.
- 10. Fault tolerance

Surprisingly enough, Däcker was not talking about a neural network based general computational intelligence systems when he made this list, he was talking about a telecom switching systems.

[1] Bjarne Däcker. Concurrent functional programming for telecommunications: A case study of technology introduction. November 2000. Licentiate Thesis.

Erlang: From Telecom Networks To Neural Networks

- A list of features
- Architectural 1:1 mapping, no conceptual gaps

Erlang Features

The features that Erlang possesses, as quoted from Armstrong's thesis [2], is as follows:

"1. Encapsulation primitives — there must be a number of mechanisms for limiting the consequences of an error. It should be possible to isolate processes so that they cannot damage each other.

2. Concurrency — the language must support a lightweight mechanism to create parallel process, and to send messages between the processes. Context switching between process, and message passing, should be efficient. Concurrent processes must also time-share the CPU in some reasonable manner, so that CPU bound processes do not monopolize the CPU, and prevent progress of other processes which are 'ready to run.'

3. Fault detection primitives — which allow one process to observe another process, and to detect if the observed process has terminated for any reason.

4. Location transparency — If we know the PId of a process then we should be able to send a message to the process.

5. Dynamic code upgrade — It should be possible to dynamically change code in a running system. Note that since many processes will be running the same code, we need a mechanism to allow existing processes to run "old" code, and for "new" processes to run the modified code at the same time.

With a set of libraries to provide:

- 6. Stable storage this is storage which survives a crash.
- 7. Device drivers these must provide a mechanism for communication with the outside world.
- 8. Code upgrade this allows us to upgrade code in a running system.
- 9. Infrastructure for starting, and stopping the system, logging errors , etc."

[2] Joe Armstrong, "Making reliable distributed systems in the presence of software errors " A Dissertation submitted to the Royal Institute of Technology Stockholm, Sweden

The Architectural 1:1 Mapping

DXNN: A Case Study

- The evolutionary loop
- NN based agent architecture
- Platform architecture
- Neuron Architecture
- Genotype Encoding
- Implementing Mutations
- Incorporating Modularity
- Handbook of Neuroevolution Through Erlang
Memetic Algorithm Based TWEANN

The Learning algorithm is as follows:

0. Create seed population of NN agents.

1. Spawn (convert genotype to phenotype) a population of agents.

2. Each agent interacts with the environment or some problems.

3. Each agent gets a fitness evaluation.

4. A process called exoself perturbs agent's synaptic weights.

5. Applies it to the problem again.

6. And if its performance increases, then this new synaptic weight combination is considered best, and we again perturb the synaptic weights. If the new performance is worse, then we revert to previous best, and perturb the synaptic weights.
7. Eventually all agents have had their synaptic weights tuned, and the fitness scores of the agents is compared.

8. Fitter agents allowed to create more offspring.9. Goto: 1

Parametric Mutation

- Parameter lists available to the specie:
 - Plasticity_List = [none, hebb...]
 - Activation_Function_List = [none, tanh, sin, gauss...]
 - ...
- Let different species have access to different lists of parameters.
- When you create a new function, simply add its function name to the list, without taking the system offline... offspring agents will begin incorporating the new features.
- Choosing which mutation operators to apply:
 - [mutate:MO(Agent_Id) || MO ← [MOperator || {MOperator, Prob} ← Operators, Prob <random:uniform()]]</p>

Stochastic Hill Climber

1. Output1 = tanh(1*1) = 0.76 Output2 = tanh(1*-1) = -0.76

2. Weight Perturbation

Perturbation = -0.5Try W = 0.5 = 1 - 0.5Output1 = tanh(0.5*1) = 0.46Output2 = tanh(0.5*-1) = -0.46That's closer! New W = 0.5

3. Weight Perturbation

Perturbation = +0.2Try W = 0.7 = 0.5 + 0.2Output1 = tanh(0.7*1) = 0.60Output2 = tanh(0.7*-1) = -0.60Not as good as before, New W = 0.5

4. Weight Perturbation

Perturbation = -0.5Try W = 0 = 0.5 - 0.5Output1 = tanh(0*1) = 0 !!!Output2 = tanh(0*-1) = 0 !!!

The right weight is 0.

Topological Mutation Operators

Instead of evolving a single NN, let's evolve a population

Neural Network Agent Architecture

The Infomorph's Phenotype (Substrate)

Substrate Encoding

Substrate Encoding (continued)

Substrate Encoding (continued)

An evolving NN population

Platform Architecture

Scape & Morphology

This is how my NN based agents interact with problems/simulated environments.

Morphology Specification

flatlander(actuators)->

Movement = [#actuator{name=two_wheels,id=cell_id,format=no_geo,tot_vl=2,parameters=[2]}], Cloning = [#actuator{name=create_offspring,id=cell_id,format=no_geo,tot_vl=1,parameters=[1]}], Weapons = [#actuator{name=spear,id=cell_id,format=no_geo,tot_vl=1,parameters=[1]}], Communications = [#actuator{name=speak,id=cell_id,format=no_geo,tot_vl=1,parameters=[1]}], Movement++Weapons++Communications;

flatlander(sensors)->

Pi = math:pi(),

Distance_Scanners =

[#sensor{name=distance_scanner,id=cell_id,format=no_geo,tot_vl=Density,parameters=[Spread,Density,ROffset]} || Spread<-[Pi/2],Density<-[5], ROffset<-[Pi*0/2]],

Color_Scanners =

[#sensor{name=color_scanner,id=cell_id,format=no_geo,tot_vl=Density,parameters=[Spread,Density,ROffset]} ||

Spread <-[Pi/2], Density <-[5], ROffset<-[Pi*0/2]],

Communications=[#sensor{name=Name,id=cell_id,format=no_geo,tot_vl=Density,parameters=[Spread,Density,ROffset]} || Name <- [sound_scanner], Spread <-[Pi/2], Density <-[10], ROffset<-[Pi*0/2]],

Distance_Scanners++Communications++Color_Scanners.

Neural Processing

Output = postproc:PoF(af:AFF(sigint:SIF(preproc:PrF(Input),Weights))), Updated_W = plasticity:PlastF(Input,Output,Weights).

StandardOutput = postproc:none(af:tanh(sigint:dot(preproc:none(Input),Weights))), Updated_W = plasticity:none(Input,Output,Weights).

ART_N = postproc:threshold(af:none(sigint:diff(preproc:normalizer(Input),Weights))), Updated_W = plasticity:hebb(Input,Output,Weights).

```
loop(S,ExoSelf_PId,[ok],[ok],SIAcc,MIAcc)->
         {PFName, PFParameters} = PF = S#state.pf,
         AF = S#state.af,
         AggrF = S#state.aggrf,
         Ordered SIAcc = lists:reverse(SIAcc),
         SI PIdPs = S#state.si pidps current,
                                                                                                                                   DXNN Neural Process
         SOutput = sat(functions:AF(signal_aggregator:AggrF(Ordered_SIAcc,SI_PIdPs)),?OUTPUT_SAT_LIMIT),
         Output Plds = S#state.output pids,
         [Output Pld ! {self(),forward,[SOutput]} || Output_Pld <- Output_Plds],
                                                                                                                                   In under 80 lines
         case PFName of
                  none ->
                            U S=S;
                  _ ->
                            Ordered MIAcc = lists:reverse(MIAcc),
                            MI_PIdPs = S#state.mi_pidps_current,
                            MAggregation_Product = sat(signal_aggregator:dot_product(Ordered_MIAcc,MI_PIdPs),?SAT_LIMIT),
                            MOutput = functions:tanh(MAggregation Product),
                            U SI PIdPs = plasticity:PFName([MOutput|PFParameters],Ordered SIAcc,SI PIdPs,SOutput),
                            U S=S#state{
                                     si pidps current = U SI PIdPs
         end.
         SI Plds = S#state.si_pids,
         MI Plds = S#state.mi pids,
         neuron:loop(U S,ExoSelf Pld,SI Plds,MI Plds,[],[]);
loop(S,ExoSelf PId,[SI PId|SI PIds],[MI PId|MI PIds],SIAcc,MIAcc)->
         receive
                                                                                                               {ExoSelf PId,weight perturb,Spread}->
                  {SI PId.forward.Input}->
                            loop(S,ExoSelf PId,SI PIds,[MI PId]MI PIds],[{SI PId,Input}]SIAcc],MIAcc);
                                                                                                                         Perturbed SIPIdPs=perturb IPIdPs(Spread,S#state.si pidps backup),
                                                                                                                         Perturbed MIPIdPs=perturb IPIdPs(Spread,S#state.mi pidps backup),
                  {MI PId,forward,Input}->
                                                                                                                         U S=S#state{
                            loop(S,ExoSelf PId,[SI PId|SI PIds],MI PIds,SIAcc,[{MI PId,Input}|MIAcc]);
                  {ExoSelf Pld,weight backup}->
                                                                                                                                  si_pidps_bl=Perturbed_SIPIdPs,
                            U S=case S#state.heredity type of
                                                                                                                                  si pidps current=Perturbed SIPIdPs,
                                      darwinian ->
                                                                                                                                  mi pidps current=Perturbed MIPIdPs
                                               S#state{
                                                                                                                         loop(U S,ExoSelf PId,[SI PId|SI PIds],[MI PId|MI PIds],SIAcc,MIAcc);
                                                        si pidps backup=S#state.si pidps bl,
                                                                                                                {ExoSelf Pld,reset prep}->
                                                        mi pidps backup=S#state.mi pidps current
                                                                                                                         neuron:flush buffer(),
                                               };
                                                                                                                         ExoSelf Pld ! {self(),ready},
                                     lamarckian ->
                                                                                                                         RO Plds = S#state.ro pids,
                                               S#state{
                                                                                                                         receive
                                                        si pidps backup=S#state.si pidps current,
                                                        mi pidps backup=S#state.mi pidps current
                                                                                                                                  {ExoSelf Pld, reset}->
                                                                                                                                            fanout(RO Plds,{self(),forward,[?RO_SIGNAL]})
                                                                                                                         end.
                            end.
                                                                                                                         loop(S,ExoSelf PId,S#state.si pids,S#state.mi pids,[],[]);
                            loop(U_S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
                                                                                                                {ExoSelf Pld.get backup}->
                  {ExoSelf_PId,weight_restore}->
                                                                                                                         NId = S#state.id,
                            U S = S#state{
                                                                                                                         ExoSelf PId ! {self(),NId,S#state.si_pidps_backup,S#state.mi_pidps_backup},
                                     si_pidps_bl=S#state.si_pidps_backup,
                                     si pidps current=S#state.si pidps backup,
                                                                                                                         loop(S,ExoSelf_PId,[SI_PId|SI_PIds],[MI_PId|MI_PIds],SIAcc,MIAcc);
                                                                                                                {ExoSelf_PId,terminate}->
                                     mi pidps current=S#state.mi_pidps_backup
                                                                                                                         ok
                            loop(U S,ExoSelf PId,[SI PId|SI PIds],[MI PId|MI PIds],SIAcc,MIAcc);
                                                                                                               end.
```

Mnesia as Storage for Genotypes

- Robust and safe
- Tuple friendly
- Easy atomic mutations
 - If any part of the mutation fails, the whole mutation is just retracted automatically

Genotype Record Relations

-record(population,{id, polis_id, specie_ids=[], morphologies=[], innovation_factor, evo_alg_f, fitness_postprocessor_f, selection_f, trace=#trace{}}).

-record(specie,{id, population_id, fingerprint, constraint, agent_ids=[], dead_pool=[], champion_ids=[], fitness, innovation_factor={0,0}, stats=[]}).

-record(agent,{id, encoding_type, generation, population_id, specie_id, cx_id, fingerprint, constraint, evo_hist=[], fitness=0, innovation_factor=0, pattern=[], tuning_selection_f, annealing_parameter, tuning_duration_f, perturbation_range, mutation_operators,tot_topological_mutations_f,heredity_type,substrate_id}).

-record(cortex, {id, agent_id, neuron_ids=[], sensor_ids=[], actuator_ids=[]}).

-record(sensor,{id,name,type,cx_id,scape,vl,fanout_ids=[],generation,format,parameters,gt_parameters,phys_rep,vis_rep,pre_f,post_f}).

-record(actuator,{id,name,type,cx_id,scape,vl,fanin_ids=[],generation,format,parameters,gt_parameters,phys_rep,vis_rep,pre_f,post_f}).

-record(neuron, {id, generation, cx_id, pre_processor, signal_integrator, af, post_processor, pf, aggr_f, input_idps=[], input_idps_modulation=[], output_ids=[], ro_ids=[]}).

Genotype

-record(agent,{id, encoding_type, generation, population_id, specie_id, cx_id, fingerprint, constraint, evo_hist=[], fitness=0, innovation_factor=0, pattern=[], tuning_selection_f, annealing_parameter, tuning_duration_f, perturbation_range, mutation_operators,tot_topological_mutations_f,heredity_type,substrate_id}).
 -record(cortex, {id, agent_id, neuron_ids=[], sensor_ids=[], actuator_ids=[]}).
 -record(substrate, {id, agent_id, densities, linkform, plasticity=none, cpp_ids=[],cep_ids=[]}).
 -record(sensor,{id,name,type,cx_id,scape,vl,fanout_ids=[],generation,format,parameters,gt_parameters,phys_rep,vis_rep,pre_f,post_f}).
 -record(neuron, {id, generation, cx_id, pre_processor,signal_integrator,af, post_processor, pf, aggr_f, input_idps=[], input_idps_modulation=[], output_ids=[], ro_ids=[]).

-record(population,{id, polis_id, specie_ids=[], morphologies=[], innovation_factor, evo_alg_f, fitness_postprocessor_f, selection_f, trace=#trace{}}). -record(specie,{id, population_id, fingerprint, constraint, agent_ids=[], dead_pool=[], champion_ids=[], fitness, innovation_factor={0,0},stats=[]}). -record(avatar,{id,sector,morphology,energy=0,health=0,food=0, age=0, kills=0, loc, direction, r, mass, objects=[], state,actuators,sensors}).

{neuron, {{0.0, 7.427859664110573e-10}, neuron}, {{origin,7.427859664144057e-10},cortex}, undefined, undefined, tanh, undefined, {none,[]}, dot product, [{{{-1,7.427859664112002e-10},sensor}, [{0.15516645684354882,[]}, {0.4631980138130717,[]}, {0.4869749390984265,[]}]}], Π, [{{1,7.427859664111848e-10},actuator}], {actuator, {{1,7.427859664111848e-10}, actuator}, pb SendOutput, standard, {{origin,7.427859664144057e-10}, cortex}, {private,pb sim}, [{{0.0,7.427859664110573e-10},neuron}], 0, undefined. [with damping,1], undefined, undefined, undefined, undefined }]

Recent Updates

- Hall-Of-Fame/Archiving
- Multi-Objective Optimization
- Novelty Search
- Neural-Micro-Circuit
- Adaptive-Resonance-Theory

Larger Basic Building Blocks: Neural-Micro-Circuits

NMC Node

calculate_output_std(IVector,[Cur_NeurodeLayer|Circuit])->

U_IVector = [calculate_neurode_output_std(IVector,N#neurode.weights,N#neurode.bias,0) || N <- Cur_NeurodeLayer], calculate_output_std(U_IVector,Circuit); calculate_output_std([Output],[])->

Output.

Distributed Substrates

ARTMAP Agent

Crystallization/ADFs

Automatically Defined Functions (ADFs), subgraphs not mutated in a long while, become treated as units.

Modular NNs

The Pole Balancing Benchmark

A. Single pole balancing simulation

B. Double pole balancing simulation

Double Pole Balancing Benchmark

Method	Without-Damping	With-Damping
RWG	415209	1232296
SANE	262700	451612
CNE	76906	87623
ESP	7374	26342
NEAT		6929
CMA-ES*	3521	6061
CoSyNE*	1249	3416
DXNN (old)	2359	2313
DXNN	1289	1830
DXNN:NMC	1618	1703

Benchmark data taken from: Faustino "Gomez, Jurgen Schmidhuber, Risto Miikkulainen,: Accelerated Neural Evolution through Cooperatively Coevolved Synapses. Journal of Machine Learning Research 9 (2008) 937-965"

Artificial Life

- Simple Food Gathering
- Dangerous Food Gathering
- Predator Vs. Prey

Simple Food Gathering

Dangerous Food Gathering

20

Predator Vs. Prey

Forex Trading

- Trading using sliding window
- Trading using chart window

The Substrate Topology

Forex Trading Results

TrnAvg	TrnBst	TstWrst	TstAvg	TstStd	TstBst	Price Vector Sensor Type
540	550	225	298	13	356	[SlidWindow5]
523	548	245	293	16	331	[SlidWindow10]
537	538	235	293	15	353	[SlidWindow20]
525	526	266	300	9	353	[SlidWindow50]
548	558	284	304	14	367	[SlidWindow100]
462	481	214	284	32	346	[ChartPlane5X10]
454	466	232	297	38	355	[ChartPlane5X20]
517	527	180	238	32	300	[ChartPlane10X10]
505	514	180	230	26	292	[ChartPlane10X20]
546	559	189	254	29	315	[ChartPlane20X10]
545	557	212	272	36	328	[ChartPlane20X20]
532	541	235	279	23	323	[ChartPlane50X10]
558	567	231	270	20	354	[ChartPlane50X20]
538	545	256	310	37	388	[ChartPlane100x10]
311	N/A	N/A	300	N/A	N/A	Buy & Hold
N/A	704	N/A	N/A	N/A	428	Max Possible

Generalization Results

Fitness
Epitope Prediction

Epitope Prediction Platform

Beyond The Horizon

- Trivial to distribute a NN over the Internet
- This adds an enormous amount of robustness and computational power
- Erlang's natural code hot-swapping ability, potentially allows neural networks to rewrite their own source code, without going off-line If something goes wrong, if the rewriting causes a crash to the network, the exoself can recover the system...
- Building modular neural networks, composed of very different structures, becomes trivial
- Other scientific applications in the multi-agent based field
 - Cyberwarfare
 - Circuit
 - Economic multiagent based simulations

- ...

Cyberwarfare

Evolving UCAV Neurocontrollers

Conclusion & Summary

- Common programming language do not have the architecture that is perfect for modern Neural Network based Computational Intelligence
- A perfect functional programming language already exists, it is Erlang, the quintessential NN programming language, with a 1:1 mapping.
- The first of fully general Topology and Parameter Evolving Universal Learning Networks in Erlang has been created, called DXNN.
- New horizons have opened up that can now be explored with ease. Experiments within self recovery, global distribution of a NN, self rewriting... are all easily accomplished due to the features Erlang possesses
- It is essential for the scientific community to begin utilizing this language, as the hardware will only continue to scale outwards, and wheras languages like Scala are Java extensions, Erlang was built from the start for robustness, scalability, distribution...

References

- Joe Armstrong, "Making reliable distributed systems in the presence of software errors " A Dissertation submitted to the Royal Institute of Technology Stockholm, Sweden
- Bjarne Däcker, "Concurrent functional programming for telecommunications: A case study of technology introduction" November 2000. Licentiate Thesis
- Gene Sher (2012), "Handbook of Neuroevolution Through Erlang" Springer-Verlag, New York

Thank You

Questions?