
Believe in Erlang
in Games!!!

Noah Gift

Mario Izquierdo
James Mayfield

 High Level Overview of
Erlang in Game Backends

Overview of Our Talk: 3 for 1
Special

● Advocating Erlang in A Game Company:
Noah Gift

● RabbitMQ in DIO: Mario Izquierdo
● Versu an AI Game Evolution: James

Mayfield

You Can Get Fired For Using Erlang

● Erlang is "functional" and
this is "complicated" for
"regular" programmers

● It has been around for too
long

● It is not Java, or Python or
Ruby or C++ or "X".

● Your boss is an idiot who
can't code like this guy???

Always Be Delivering

● On day 1 at work don't suggest rewriting the
billing systems in Haskell

● Show up early, stay late, underpromise
and overdeliver. Rinse and Repeat * N

● Then suggest Erlang on a small project...

Ubiquitous Multiprocessing in
Erlang: Not TBD...

● PyCon 2013 Keynote: Async
Multiprocessing...TBD

● Event Loops in Ruby, Node and Python can
be simple at first, then exponentially difficult

●

More on Event Loops in
Scripting Languages

● What do you do when your one processor
gets hot and starts to consume a lot of CPU?

● Start to write Erlang in a scripting language
on a tight deadline?

● Amdah's Law (sucks)
● Energy Efficiency

More on Event Loops in Scripting
Languages

● Maybe you simply use RabbitMQ to dance
around it...notice how the "X" language's
largest website always has a secret
ingredient...(hint not their language)

● Erlang (RabbitMQ): script language crack.

RabbitMQ
in dio

 Mario Izquierdo

Erlang can help you even if
you don't know erlang!

What is RabbitMQ?

What is RabbitMQ?

● A service for messaging that implements the
AMQP protocol

● Erlang nodes running Erlang applications
(so it must be good)

Think of it as a service (like MySQL), where you can:
● Open a connection
● Define Exchanges, Queues and Bindings

(instead of tables and indexes)
● Send and Receive Messages

(instead of reading/adding records)

Queues and Consumers

queue

Consumer
Consumer

Consumer

Round Robin
Deliver

subscribe

Exchanges and Producers

Exchange Exchange

Producer Producer

Producer

Publish
to any exchange

Bindings and Routing

Consumer

Producer Consumer

Consumer

Exchange

queue

queue

Publish

SubscribeBind
routing rules

Types of Exchanges and bindings

Direct
uses routing_key

Fanout
broadcasts to all

Exchange Exchange

queue queue

cat
dog

dog

dog

queue queue

Typical usage of RabbitMQ

● Connect with RabbitMQ
● Define an exchange

○ Start publishing messages
● Define a queue and its bindings

○ Subscribe to the queue and listen for incoming
messages

● Add more consumers (workers) to the same
queue for load balancing

● Connect applications written in different
languages

● "Send and forget", i.e. logging

Real usage example: dio.com

dio is a web app built on
ruby, optimized to support
multiplayer experiences in
real time.

A place (world) instance
runs in memory on one of
the available GameServers.

Dio Architecture

● Browsers send HTTP requests to Rails and
Connection Servers

● Connection Servers use HTML5
EventSource for push notifications

● Connection Servers send in-game
messages to world instances that are
running in Game Servers

● Connection and Game servers need to talk
to each other constantly, and they need to
scale

Dio before RabbitMQ

Game
Server

Connection
Server

Rails
Server

Browser

AMQP

Dio Broker

Browser Browser

Rails
Server

Workers

Game
Server

Connection
Server

Game
Server

NGINX

Zmq

WebAPI

Push
Notifications

http

Dio before RabbitMQ

Game
Server

Connection
Server

Rails
Server

Browser

AMQP

Dio Broker

Browser Browser

Rails
Server

Workers

Game
Server

Connection
Server

Game
Server

NGINX

Zmq

RabbitMQ is used
only for Chat

Knows about all
GameServers and
worlds, decides
about where to run
the next world.
Receives
GameServers
Heartbeats.Routes
Connection Server
requests to the right
GameServer.

Instance 0 used only
for WebAPI

Keep a ZeroMQ socket for each GameServer, and
other for the Broker. EventSource with the Browsers.

Rails and workers
can not talk with

other components

Push
Notifications

http

Relies in ZeroMQ to send messages

Dio before RabbitMQ

Game
Server

Connection
Server

Rails
Server

Browser

AMQP

Dio Broker

Browser Browser

Rails
Server

Workers

Game
Server

Connection
Server

Game
Server

NGINX

http

Relies in ZeroMQ to send messages

But it's ok, omnipresent
and omnipotent Broker
will keep the evil away,
right?

GOD

notice our friend
was already here

Integrate other
systems is
really hard

Pentagram Antipattern

Build a complex system with a lot of
interdependencies and you will cast the devil
● Dependence on black magic
● Dependence on priests
● Multiple global-aware Gods

Fix it with SCIENCE!
● Study the problem
● Burn Churches
● Use the right tool for the right problem

Dio before RabbitMQ: Problems
● ZeroMQ has bad support in ruby, the libraries are outdated.
● ZeroMQ sockets are very low level, actually they are a very weird mix of

a low level library with black magic, they are never disconnected.
● Too many sockets: it needs an all-to-all socket connections between all

game servers, connection servers and broker (Pentagram).
● Hard to scale
● Limited communications: for example if we want to send a message

from Rails to a Game Server, or from a Worker to a ConnectionServer. Too
hard that seems impossible, so we end up doing hacks like short polling
mongodb or adding HTTP methods in the ConnectionServers (Gandalf).

● Broker is too complex. It is needed for routing and also to decide where
to run new world instances. Needs to know about every GameServer and
needs to be in sync, which makes it very error prone and unstable (GOD)

Game
Server

Connection
Server

Browser

Rails
Server

AMQP

NGINX
Push
Notifi.

Connection
Server

Rails
Server

Game
Server

Browser

http

Browser

Workers

Dio with
RabbitMQ

Game
Server

Connection
Server

Browser

Rails
Server

AMQP

NGINX
Push
Notifi.

Connection
Server

Rails
Server

Game
Server

Browser

http

Holds the connection with
the browsers to push
notifications.
Also works as ClientProxy

HTML and JavaScript client.
Send messages through HTTP.
Receive messages through
HTML5 SSE.

Browser

Serves HTML and
assets.

Authentication.
Authorization.

Pages outside stories.
Not a RabbitMQ

consumer.

Run world instances (several
instances on each GameServer), in

real time, in memory.

Subscribes to RabbitMQ by
world_id channel.

Publish to avatar_id channel

RabbitMQ exchanges and queues.

Used for messaging, load balance
world instances in the GameServers
and allows any component to talk with
any other component.

For example send a push notification
to the browser from a Sidekiq worker.

Workers

Dio with
RabbitMQ

Game
Server

Connection
Server

Browser

Rails
Server

AMQP

NGINX
Push
Notifi.

Connection
Server

Rails
Server

Game
Server

Browser

http

Browser

Workers

Dio with
RabbitMQ

Dio Broker

GO TO
HELL

GOD

RabbitMQ

Who would you prefer to worship?

ARCANE GODS

defined by some dudes
in a reactive way

to remove the fears
of the people of their time

Dio Broker

RabbitMQ GOD

supported by a big community,
widely used,

known practices,
and written in erlang

Good choice

RabbitMQ

RabbitMQ
ROCKS

ME TOO

AGREE

Dio with RabbitMQ: Advantages
● Consistency: AMQP is going to be the protocol for messaging.
● Flexibility: is easy to add more components when needed, and they instantly are connected

with any other component.
● Visibility: RabbitMQ is more easy to monitor than a lot bunch of sockets.
● Less restrictions: Any system can be a producer and send messages to RabbitMQ, so if we

need to send a message to a world from Rails is easy, and if we need to send a push notification
to the user from rails or from a worker is also easy.

● Support: RabbitMQ has much better support in ruby than ZeroMQ.
● More Features: RabbitMQ can accomplish a lot more. ZeroMQ is like a simple abstraction over

sockets whether RabbitMQ is a full messaging system (similar to compare the file system with a
database).

● Routing out of the box: for example a Game Server can subscribe for messages to the words
that are running on it, and the Connection Server just publishes to that world, no need to know
what Game Server is running that world.

● No complex Broker and automatic load balancing: We can use RabbitMQ queues to round-
robin new worlds, and the Game Servers can subscribe/unsubscribe to that queue when they
are available or overloaded. So they don't need to know about other Game Servers.

Game
Server

Connection
Server

AMQP

Connection
Server

Game
Server

Browser

Rails
Server

NGINX

Rails
Server

Browser

http

Browser

Workers

Messaging
examples

Game Messages

Game
Server

Connection
Server

Connection
Server

avatar_clients.direct

Game
Server

World1

Av2

Av3

Av1

Av2 Av3

world_instances.
direct

World1

Av1

Game
Server

Connection
Server

Connection
Server

avatar_clients.direct

Game
Server

World1

Av1
Av3

Av1

Av2
Av3

world_instances.
direct

World1

Av2

non_loaded_worlds.
fanout REDIS

loading_world
locks

Load a world instance (1)

Game
Server

Connection
Server

Connection
Server

avatar_clients.direct

Game
Server

World1

Av1
Av3

Av1

Av2 Av3

world_instances.
direct

World1

Av2

non_loaded_worlds.
fanout REDIS

loading_world
locks

Load a world instance (2)

Av4

wants to play in
World2

Av4

Game
Server

Connection
Server

Connection
Server

avatar_clients.direct

Game
Server

World1

Av1
Av3

Av3

world_instances.
direct

World1

Av2

non_loaded_worlds.
fanout REDIS

loading_world
locks

Load a world instance (3)

Av4

connect world 2

Message is
returned because can
not route to World2

Av1

Av2

Av4

Game
Server

Connection
Server

Connection
Server

avatar_clients.direct

Game
Server

World1

Av1
Av3

Av3

world_instances.
direct

World1

Av2

non_loaded_worlds.
fanout REDIS

loading_world
locks

Load a world instance (4)

Av4
connect

Av1

Av2

Av4

connect

connect

round robin

Game
Server

Connection
Server

Connection
Server

avatar_clients.direct

Game
Server

World1

Av1
Av3

Av3

world_instances.
direct

World1

Av2

non_loaded_worlds.
fanout REDIS

loading_world
locks

Load a world instance (5)

Av4

Av1

Av2

Av4

World 2

World2

World 2

Game
Server

Connection
Server

Connection
Server

avatar_clients.direct

Game
Server

World1

Av1
Av3

Av3

world_instances.
direct

World1

Av2

non_loaded_worlds.
fanout REDIS

loading_world
locks

Load a world instance (6)

Av4

Av1

Av2

Av4

World2

World 2

connect ACK

Thanks

Questions for the end
Have fun!

Versu: Evolution of
an Erlang Project

 James Mayfield

Erlang can help you even if
you don't know erlang!

What is Versu?

What is Versu?

"Versu is an interactive storytelling platform that builds
experiences around characters and social interaction"

What is Versu?

● Simulator

What is Versu?

● Simulator
○ Written in C

What is Versu?

● Simulator
○ Written in C
○ Robust, but can crash (content errors)

What is Versu?

● "Business Logic"

What is Versu?

● "Business Logic"
○ Talks to C process via ports

What is Versu?

● "Business Logic"
○ Talks to C process via ports
○ Tracks players and games

What is Versu?

● "Business Logic"
○ Talks to C process via ports
○ Tracks players and games
○ Some data transformation of simulator I/O

What is Versu?

● Web App

tm

What is Versu?

● Web App
○ Expose Rest-like interface to simulator functions

tm

What is Versu?

● Web App
○ Expose Rest-like interface to simulator functions
○ UI

tm

What is Versu?

● Data Store

What is Versu?

● Data Store
○ Saved games

What is Versu?

● Data Store
○ Saved games
○ User generated content

The Evolution of Versu

The early days...

The Evolution of Versu

The early days...

Process Simulator
Port

Misultin

Process

The Evolution of Versu

First Steps...

Supervisor

Game Logic Simulator
Interface

Simulator

Cowboy

The Evolution of Versu

Many sims per node

Supervisor

Supervisor Port
Owner

Sim..

Supervisor

Game
Logic

Simulator
Interface

Supervisor

Supervisor Port
Owner

Sim..

Game
Logic

Simulator
Interface

Cowboy

Increased Awesomeness

The Evolution of Versu

S

S W
C

S

W W

S

S W
C

W W

Erlang VM Node

S

S W
C

S

W W

S

S W
C

W W

Erlang VM Node
YeeHaw YeeHaw

Load balancer

More Increased Awesomeness

The Evolution of Versu

S

S W
C

S

W W

S

S W
C

W W

Erlang VM Node

S

S W
C

S

W W

S

S W
C

W W

Erlang VM Node
YeeHaw YeeHaw

Load balancer
Riak

Riak Riak

Take away

Take away

● Happy devs

Take away

● Happy devs
● Happy ops

Take away

● Happy devs
● Happy ops
● much to learn!

Thank You

References

● http://www.ibm.
com/developerworks/cloud/library/cl-
optimizepythoncloud2/index.html

●

