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• Why is fault tolerance important

• How can we achieve fault tolerance

• How do we do fault tolerance in Erlang

• So what is the problem with that then?

• A solution to the problems

• Extracting the information

• What do we do with the information

• Correctness concerns

• The tool

Overview
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Why is fault tolerance important

• Obvious where a failure can have life threatening effects

� Nuclear power plant control systems

� Aircraft control systems

� Vending machine control systems

• But the dependence on 24/7 available systems is pervasive

� Banking

� Travel agent

� Health services

� Bookies

� Games
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How can we achieve fault tolerance

Problems:

• Hardware fails

• Nonconformance to specification

• Changed interfaces

• Idiots (users)

• There are three things in life we cannot avoid

� Death

� Taxes

� Bugs (code, specification and requirements)
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How can we achieve fault tolerance

Solution 1:

• Ensure there are no errors in the

� Code

� Specification

� Requirements

• Check everything the environment sends

• Handle all the possible external failures 

• Handle all combinations of external failures

• If you believe in that, let me tell you that 
Father Christmas was my grandfather in a 
silly costume. 
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How can we achieve fault tolerance

Solution 2:

• Handle the unexpected

• Best effort diagnosis that things are bad

• Restart the subsystem that is naughty
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How do we do fault tolerance in Erlang

Solution 2:

• Handle the unexpected

� Let it crash!

� Exceptions are only caught when you can solve the problem 
here and now

• Best effort diagnosis that things are bad

� Assertional style of programming, stating the correct case 
rather than hedging your bets. See previous point

� When some process has crashed it is trivial really

• Restart the subsystem that is naughty

� Supervision of processes by other processes that restarts 
them, then iterate
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How do we do fault tolerance in Erlang (OTP)

Solution 2:

• Library support for hierarchical supervision structures

• Configurable how each child is treated

� Permanent

� Transient

� Temporary

• Handles depencies between children

� one_for_all

� rest_for_one

� one_for_one

• Configurable how often children are allowed to crash

� Maximum number during Maximum time

Supervisors

Workers
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How do we do fault tolerance in Erlang 
(Real Life)

Solution 2:

"We are extremely pleased with the 
outcome of the initial phase of this 
project. This is a major step in the 
phased development of what we believe is 
a world-leading Next Generation 
Network," said Richard Newman, General 
Manager of Planning and Delivery of 
Network Transport at BT Wholesale.

Ericsson Press Release 5 July, 2002

“As a matter of fact, the network 
performance has been so reliable that
there is almost a risk that our field 
engineers do not learn maintenance 
skills” 

Bert Nilsson, Director 
NGS-Programs Ericsson

Ericsson Contact, Issue 19 2002

“Since cut-over of the first nodes 
in BT’s network in January 2002,
only one minor fault has occurred, 

resulting in 99.9999999% availability.”
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So what is the problem with that then?

• We have a nice framework to build fault tolerant systems in

• It has been proved in practice that it can be used to build large 
scale fault tolerant systems

• But, how do we now that we have actually built a system with 
good fault tolerance properties?

• Test… 

good but we have to handle all combinations of failures

• Understanding your supervision structure really, really helps

That is actually what is talk is all about
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A solution to the problem

• So we want to understand our supervision 
structure, how do we find it?

• The design documentation

Do you recognise the gentlemen on the right?

• The next port of call is the implementation

� But it is spread out everywhere

� The specification for the supervisors is 
generated by code

� It can be modified by configurations

• We have computers, 

let them do all the legwork
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Extracting the information

• So we want to have a tool that extracts the supervision 
structure from the source code of an Erlang system

• Unfortunately, it is not only impossible in the general case, it 
is intractable in most of the actual cases.

• Let’s run it and inspect it

� We need all the possible interleavings of starting of 
processes and messages between them

� Potentially only one structure out of many depending on 
configuration

� We have to have a runnable system before we can even 
start inspecting it
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Extracting the information (Take 2)

• Limit analysis to OTP systems

� Well defined supervisors provided (you got the code)

� Synchronised start up sequence (behaviours required) 

� It is sufficient to look at processes in isolation

� Well defined initialisation part of processes that are 
behaviours 

• Symbolic evaluation

� Enables us to handle the case that we lack information

• Restrict the analysis to the  “static part of the system”

� Otherwise when do we stop

• The unit of interest is the application

� Natural unit in OTP
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Extracting the information (In practice)

Missing information

• Code does not exist or compile, missing configuration

• We introduce an “unknown” value 

� top element of the semantic domain

• But we have to be able to handle that value

• We introduce non determinacy in the evaluation

• When we have a choice depending on an unknown value we 
explore all the possible evaluations
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Extracting the information (In practice)

Evaluation Depth 

• Potentially the code does not terminate when we have an 
unknown value

• When should we give up, configurable

• Simple cycle detection
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Extracting the information (In practice)

Setup

• Paths

• Inclusion directories

• Node name
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Extracting the information (In practice)

Global state

• We cannot let the analysed system interact directly with the 
real world

• We have to be able to reset the global state for an 
alternative evaluation

• We simulate the global state of the system for the parts we 
cannot do without and assume no knowledge of the rest

• Simulated are (and possibly initialised):

� Registry, Erlang Term Storage(ets), Mnesia, File System

• The generation of global states has to have a good 
chaching mechanism
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Extracting the information (In practice)

Exception Handling 

• The non determinacy and exceptions are not good bedfellows

• Many constructs make it necessary to consider a possible 
exception when we evaluate with an unknown value present

• This can cause an intractable growth in the number of 
evaluations that has to be considered

• Three strategies to deal with this:

� Hope for the best

� Ignore uncaught exceptions, they would just crash the 
system anyway

� Ignore all exceptions, this is unsound
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Extracting the information (In practice)

Behaviours

• The behaviours’ behaviour is supposed to be well defined

• We do not want to analyse that

• The  behaviours are embedded in the evaluator for efficiency 
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What do we do with the information

• Read and inspect it manually

But we have computers

• We can animate the supervision structure and actually show 
what happens when a selected process fails

• We can combine information and deduct properties

� How often a particular process has to terminate to cause 
the entire structure to fail

• We can formally reason about properties

• What properties should we consider?

� Repair

� No concealment

� Good design principles
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What do we do with the information

The Repair property:

Whenever a process that takes part in the supervision 
structure fails, the supervision structure returns to the 
process structure prior to the failure after a reasonable 
delay.
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What do we do with the information

The Repair property:

• We need to check:

� Each processes that fails is replaced by an equivalent 
“restarted” process in the structure

� Each process replaced by a restarted process has indeed 
terminated

• Side orders

� A non-supervisor that is linked to a failed process does not 
trap exits

� The initialisation of a restarted process creates the same 
structure as the process it replaces
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What do we do with the information

The Non concealment property:

When the cause of a failure is not transient or 
sufficiently infrequent to let the application function 
acceptably, only a small number of recoveries should 
occur before the supervision structure fails.

.
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What do we do with the information

Good design principles

• All processes should create their children using spawn_link

• The max restart frequency of intermediate supervisors is 0

• Only supervisors should have shutdown time infinity

• But most importantly one can check design rules of the 
company/devivsion/team
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Correctness concerns

Why should we trust the extracted structure?

• A four stage rocket

� Formalise a semantics for the needed subset of Erlang

� Formalise a semantics for Erlang that has an unknown 
value and where an evaluation may have several results

� Prove that for the supervision structure that is generated by 
the “real” semantics is included in the set of structures 
generated by the “abstract” semantics

� Base the symbolic evaluation on the “abstract” semantics

• In fact it was done the other way around, 

almost
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The tool

Yes there is a tool

• It is pre-alpha

• Can analyse a number of OTP applications

• Has been used to analyse a number of applications in AXD301

� The analysis results were confirmed by the designers

• Needs several major rewrites before going beta

� Packages are still experimental �

� Extended support for the global state

� More OTP libraries needs to be embedded in the evaluator

� Configuration simplified

� User interface (sigh)
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The tool

Yes there is a tool

• The extracted supervision structure can either be pretty 
printed or displayed graphically

• The graphical display can be interacted with to:

� Choose the information displayed

� Effects of termination coloured in for a specific process

• The graphical display is ugly and intended changes are :

� New web interface

� The ability to animate restart sequences

� The possibility to draw the supervision structure 

� Show the difference between structures

� Integrated with a evaluator (analyser) GUI
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The tool
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Further reading

My Ph.D. Thesis:

Official university site

• http://uu.diva-portal.org/smash/record.jsf?pid=diva2:213697

All my papers 

• http://sites.google.com/site/janhenrynystrom/Home

The ETC pages (TBD)

• http://www.erlang-consulting.com

Workshop paper

• http://www.erlang.org/workshop/2009/


