
Automatic Assessment of
Failure Recovery in Erlang Applications

Jan Henry Nyström

henry.nystrom@erlang-consulting.com

Automatic Assessment of

Failure Recovery in Erlang Applications

2Erlang Factory London 2009

• Why is fault tolerance important

• How can we achieve fault tolerance

• How do we do fault tolerance in Erlang

• So what is the problem with that then?

• A solution to the problems

• Extracting the information

• What do we do with the information

• Correctness concerns

• The tool

Overview

Automatic Assessment of

Failure Recovery in Erlang Applications

3Erlang Factory London 2009

Why is fault tolerance important

• Obvious where a failure can have life threatening effects

� Nuclear power plant control systems

� Aircraft control systems

� Vending machine control systems

• But the dependence on 24/7 available systems is pervasive

� Banking

� Travel agent

� Health services

� Bookies

� Games

Automatic Assessment of

Failure Recovery in Erlang Applications

4Erlang Factory London 2009

How can we achieve fault tolerance

Problems:

• Hardware fails

• Nonconformance to specification

• Changed interfaces

• Idiots (users)

• There are three things in life we cannot avoid

� Death

� Taxes

� Bugs (code, specification and requirements)

Automatic Assessment of

Failure Recovery in Erlang Applications

5Erlang Factory London 2009

How can we achieve fault tolerance

Solution 1:

• Ensure there are no errors in the

� Code

� Specification

� Requirements

• Check everything the environment sends

• Handle all the possible external failures

• Handle all combinations of external failures

• If you believe in that, let me tell you that
Father Christmas was my grandfather in a
silly costume.

Automatic Assessment of

Failure Recovery in Erlang Applications

6Erlang Factory London 2009

How can we achieve fault tolerance

Solution 2:

• Handle the unexpected

• Best effort diagnosis that things are bad

• Restart the subsystem that is naughty

Automatic Assessment of

Failure Recovery in Erlang Applications

7Erlang Factory London 2009

How do we do fault tolerance in Erlang

Solution 2:

• Handle the unexpected

� Let it crash!

� Exceptions are only caught when you can solve the problem
here and now

• Best effort diagnosis that things are bad

� Assertional style of programming, stating the correct case
rather than hedging your bets. See previous point

� When some process has crashed it is trivial really

• Restart the subsystem that is naughty

� Supervision of processes by other processes that restarts
them, then iterate

Automatic Assessment of

Failure Recovery in Erlang Applications

8Erlang Factory London 2009

How do we do fault tolerance in Erlang (OTP)

Solution 2:

• Library support for hierarchical supervision structures

• Configurable how each child is treated

� Permanent

� Transient

� Temporary

• Handles depencies between children

� one_for_all

� rest_for_one

� one_for_one

• Configurable how often children are allowed to crash

� Maximum number during Maximum time

Supervisors

Workers

Automatic Assessment of

Failure Recovery in Erlang Applications

9Erlang Factory London 2009

How do we do fault tolerance in Erlang
(Real Life)

Solution 2:

"We are extremely pleased with the
outcome of the initial phase of this
project. This is a major step in the
phased development of what we believe is
a world-leading Next Generation
Network," said Richard Newman, General
Manager of Planning and Delivery of
Network Transport at BT Wholesale.

Ericsson Press Release 5 July, 2002

“As a matter of fact, the network
performance has been so reliable that
there is almost a risk that our field
engineers do not learn maintenance
skills”

Bert Nilsson, Director
NGS-Programs Ericsson

Ericsson Contact, Issue 19 2002

“Since cut-over of the first nodes
in BT’s network in January 2002,
only one minor fault has occurred,

resulting in 99.9999999% availability.”

Automatic Assessment of

Failure Recovery in Erlang Applications

10Erlang Factory London 2009

So what is the problem with that then?

• We have a nice framework to build fault tolerant systems in

• It has been proved in practice that it can be used to build large
scale fault tolerant systems

• But, how do we now that we have actually built a system with
good fault tolerance properties?

• Test…

good but we have to handle all combinations of failures

• Understanding your supervision structure really, really helps

That is actually what is talk is all about

Automatic Assessment of

Failure Recovery in Erlang Applications

11Erlang Factory London 2009

A solution to the problem

• So we want to understand our supervision
structure, how do we find it?

• The design documentation

Do you recognise the gentlemen on the right?

• The next port of call is the implementation

� But it is spread out everywhere

� The specification for the supervisors is
generated by code

� It can be modified by configurations

• We have computers,

let them do all the legwork

Automatic Assessment of

Failure Recovery in Erlang Applications

12Erlang Factory London 2009

Extracting the information

• So we want to have a tool that extracts the supervision
structure from the source code of an Erlang system

• Unfortunately, it is not only impossible in the general case, it
is intractable in most of the actual cases.

• Let’s run it and inspect it

� We need all the possible interleavings of starting of
processes and messages between them

� Potentially only one structure out of many depending on
configuration

� We have to have a runnable system before we can even
start inspecting it

Automatic Assessment of

Failure Recovery in Erlang Applications

13Erlang Factory London 2009

Extracting the information (Take 2)

• Limit analysis to OTP systems

� Well defined supervisors provided (you got the code)

� Synchronised start up sequence (behaviours required)

� It is sufficient to look at processes in isolation

� Well defined initialisation part of processes that are
behaviours

• Symbolic evaluation

� Enables us to handle the case that we lack information

• Restrict the analysis to the “static part of the system”

� Otherwise when do we stop

• The unit of interest is the application

� Natural unit in OTP

Automatic Assessment of

Failure Recovery in Erlang Applications

14Erlang Factory London 2009

Extracting the information (In practice)

Missing information

• Code does not exist or compile, missing configuration

• We introduce an “unknown” value

� top element of the semantic domain

• But we have to be able to handle that value

• We introduce non determinacy in the evaluation

• When we have a choice depending on an unknown value we
explore all the possible evaluations

Automatic Assessment of

Failure Recovery in Erlang Applications

15Erlang Factory London 2009

Extracting the information (In practice)

Evaluation Depth

• Potentially the code does not terminate when we have an
unknown value

• When should we give up, configurable

• Simple cycle detection

Automatic Assessment of

Failure Recovery in Erlang Applications

16Erlang Factory London 2009

Extracting the information (In practice)

Setup

• Paths

• Inclusion directories

• Node name

Automatic Assessment of

Failure Recovery in Erlang Applications

17Erlang Factory London 2009

Extracting the information (In practice)

Global state

• We cannot let the analysed system interact directly with the
real world

• We have to be able to reset the global state for an
alternative evaluation

• We simulate the global state of the system for the parts we
cannot do without and assume no knowledge of the rest

• Simulated are (and possibly initialised):

� Registry, Erlang Term Storage(ets), Mnesia, File System

• The generation of global states has to have a good
chaching mechanism

Automatic Assessment of

Failure Recovery in Erlang Applications

18Erlang Factory London 2009

Extracting the information (In practice)

Exception Handling

• The non determinacy and exceptions are not good bedfellows

• Many constructs make it necessary to consider a possible
exception when we evaluate with an unknown value present

• This can cause an intractable growth in the number of
evaluations that has to be considered

• Three strategies to deal with this:

� Hope for the best

� Ignore uncaught exceptions, they would just crash the
system anyway

� Ignore all exceptions, this is unsound

Automatic Assessment of

Failure Recovery in Erlang Applications

19Erlang Factory London 2009

Extracting the information (In practice)

Behaviours

• The behaviours’ behaviour is supposed to be well defined

• We do not want to analyse that

• The behaviours are embedded in the evaluator for efficiency

Automatic Assessment of

Failure Recovery in Erlang Applications

20Erlang Factory London 2009

What do we do with the information

• Read and inspect it manually

But we have computers

• We can animate the supervision structure and actually show
what happens when a selected process fails

• We can combine information and deduct properties

� How often a particular process has to terminate to cause
the entire structure to fail

• We can formally reason about properties

• What properties should we consider?

� Repair

� No concealment

� Good design principles

Automatic Assessment of

Failure Recovery in Erlang Applications

21Erlang Factory London 2009

What do we do with the information

The Repair property:

Whenever a process that takes part in the supervision
structure fails, the supervision structure returns to the
process structure prior to the failure after a reasonable
delay.

Automatic Assessment of

Failure Recovery in Erlang Applications

22Erlang Factory London 2009

What do we do with the information

The Repair property:

• We need to check:

� Each processes that fails is replaced by an equivalent
“restarted” process in the structure

� Each process replaced by a restarted process has indeed
terminated

• Side orders

� A non-supervisor that is linked to a failed process does not
trap exits

� The initialisation of a restarted process creates the same
structure as the process it replaces

Automatic Assessment of

Failure Recovery in Erlang Applications

23Erlang Factory London 2009

What do we do with the information

The Non concealment property:

When the cause of a failure is not transient or
sufficiently infrequent to let the application function
acceptably, only a small number of recoveries should
occur before the supervision structure fails.

.

Automatic Assessment of

Failure Recovery in Erlang Applications

24Erlang Factory London 2009

What do we do with the information

Good design principles

• All processes should create their children using spawn_link

• The max restart frequency of intermediate supervisors is 0

• Only supervisors should have shutdown time infinity

• But most importantly one can check design rules of the
company/devivsion/team

Automatic Assessment of

Failure Recovery in Erlang Applications

25Erlang Factory London 2009

Correctness concerns

Why should we trust the extracted structure?

• A four stage rocket

� Formalise a semantics for the needed subset of Erlang

� Formalise a semantics for Erlang that has an unknown
value and where an evaluation may have several results

� Prove that for the supervision structure that is generated by
the “real” semantics is included in the set of structures
generated by the “abstract” semantics

� Base the symbolic evaluation on the “abstract” semantics

• In fact it was done the other way around,

almost

Automatic Assessment of

Failure Recovery in Erlang Applications

26Erlang Factory London 2009

The tool

Yes there is a tool

• It is pre-alpha

• Can analyse a number of OTP applications

• Has been used to analyse a number of applications in AXD301

� The analysis results were confirmed by the designers

• Needs several major rewrites before going beta

� Packages are still experimental �

� Extended support for the global state

� More OTP libraries needs to be embedded in the evaluator

� Configuration simplified

� User interface (sigh)

Automatic Assessment of

Failure Recovery in Erlang Applications

27Erlang Factory London 2009

The tool

Yes there is a tool

• The extracted supervision structure can either be pretty
printed or displayed graphically

• The graphical display can be interacted with to:

� Choose the information displayed

� Effects of termination coloured in for a specific process

• The graphical display is ugly and intended changes are :

� New web interface

� The ability to animate restart sequences

� The possibility to draw the supervision structure

� Show the difference between structures

� Integrated with a evaluator (analyser) GUI

Automatic Assessment of

Failure Recovery in Erlang Applications

28Erlang Factory London 2009

The tool

Automatic Assessment of

Failure Recovery in Erlang Applications

29Erlang Factory London 2009

Further reading

My Ph.D. Thesis:

Official university site

• http://uu.diva-portal.org/smash/record.jsf?pid=diva2:213697

All my papers

• http://sites.google.com/site/janhenrynystrom/Home

The ETC pages (TBD)

• http://www.erlang-consulting.com

Workshop paper

• http://www.erlang.org/workshop/2009/

