
Distributed
Producer/Consumer Framework

with Guaranteed Message Delivery

guanhua ye, TigerText Inc
gye@tigertext.com

Agenda

● Overview
● System Design
● Component details
● Demo

Classic producer-consumer problem

P C

Enqueue Dequeue

Distributed Producer/Consumer

P C
Enqueue Dequeue

Distributed Producer/Consumer

P C
Enqueue Dequeue

Distributed Producer/Consumer

P C
DequeueEnqueue

Distributed Producer/Consumer

P C
DequeueEnqueue

Producer/Consumer with Feedback

P C

Feedback

Enqueue Dequeue

Design Goals

● Simple producer/consumer operation
● No location limitation
● No limit on the number of producer or

consumer
● Self-provisioning, no configuration required

when adding new types of
producer/consumer

● Use off the shelf technologies

Distributed Producer/Consumer with
Guaranteed Message Delivery

P C

 Retry
Scheduler

Feedback Retry
Distributor

Message queue

retry queue

expired event queue

Enqueue S-Dequeue

- Client lib for producer/consumer in javascript and erlang

Why Redis?

● stable
● very fast
● atomic operation, transaction and server

side scripting
● Technology we familiar with
● High confidence on operations

Self-provisioning Addressing

Each event that producer generates contains:
● Service Name: Producer/Consumer use

service name to identify corresponding
message queue

● Timer Id/event id: UUID for each
timer/event

Example:
service:test_service:timer:bc0e88e1-37ff-4ce8-a7ce-6af26d768a9d

Distributed Producer/Consumer with
Guaranteed Message Delivery

P C

 Retry
Scheduler

Feedback Retry
Distributor

Message queue

retry queue

expired event queue

Enqueue S-Dequeue

- Client lib for producer/consumer in javascript and erlang

Producer behaviour

● queue_client:enqueue(Service_Name,
Meta_Data)

● queue_client:create_timer(Service_Name,
Time_in_Future, Meta_Data)

Distributed Producer/Consumer with
Guaranteed Message Delivery

P C

 Retry
Scheduler

Feedback Retry
Distributor

Message queue

retry queue

expired event queue

Enqueue S-Dequeue

- Client lib for producer/consumer in javascript and erlang

Consumer behaviour

BRPOPLPUSH

Handled
Before

Complete
Yes

Processing

No

Gen_queue_consumer

-module(gen_queue_consumer).

-callback init() -> {ok, State ::term()}.

-callback handle_event({Id ::string(), Payload ::string()},
State ::term()) -> {ok, NewState ::term()}.

Consumer example

-module(test_service_consumer).
-author('gye@tigertext.com').
-behaviour(gen_queue_consumer).
-export([init/0, handle_event/2]).

init() -> {ok, 0}.
handle_event({Id, Payload}, State) ->

io:format("Received event for test service, id=~p,
 payload=~p~n", [Id, Payload]),

queue_client:complete("test_service", Id),
{ok, State}.

Distributed Producer/Consumer with
Guaranteed Message Delivery

P C

 Retry
Scheduler

Feedback Retry
Distributor

Message queue

retry queue

expired event queue

Enqueue S-Dequeue

- Client lib for producer/consumer in javascript and erlang

Retry Scheduler behaviour

Dequeue

Handled
Before

Ignore
Yes

No

 Exceed
max # of
 retry

Yes

Schedule for retry

No

Distributed Producer/Consumer with
Guaranteed Message Delivery

P C

 Retry
Scheduler

Feedback Retry
Distributor

Message queue

retry queue

expired event queue

Enqueue S-Dequeue

- Client lib for producer/consumer in javascript and erlang

Retry Distributor behaviour

● Dequeue expired event queue
● Get the service name from the event
● Enqueue to the right queue base on service

name

What works well

● System scales with added
producer/consumer

● The system does not degrade with
slow consumer or stopped consumer

● It is reliable, it handles millions of
events every day

Lessons learned

● redis lrem is expensive - don't use
when the queue length is big

● redis expire cannot be used as real-
time timer

DEMO

Weather Station

● Producer - weather man
● Consumer - A gen server that consumes

weather report, and does a HTTP post to a
web server

● Weather web site - Host current weather
report

● End user - Whoever visits weather web site

Reference & links

redis - www.redis.io
node.js - www.nodejs.org
retry scheduler and distributor - https://github.
com/georgeye/node_timer_service

