Analyzing Erlang with
big data techniques
Ying Li

Concurix Corporation
March 21, 2013

\ @&

Recap: The Manycore era is here now

AMD Opteron family 15h

64 cores: 16 per chip x 4 sockets
Streaming SIMD extensions (SSE4)

128 GB RAM—512GB max

8 NUMA Domains with Hypertransport

~$4.7K

300000 — — T

I [
Stock - - -
P

250000

200000

150000

Locks in traditional O-O
languages limit scalability
per Amdahl’s Law

100000

Throughput (requests / sec / core)

50000

0 | | | | | | | | | | |
1 4 8 12 16 20 24 28 32 36 40 44 48
Cores

Figure 5: memcached throughput.

Recap: The Concurix Opportunity:
Realizing Moore’s Law for software

Users per second

1600

1200

Chicago Boss Scaling

B Unsustainable

B Caching and
refactoring

Caching

\ B Unoptimized

32

Schedulers

46 60

Recap: Summarize and animate application trace data

|

19
© O O /¢ concurix x
€ 2 C i [concuri ix.com/main/bench i o . X =
" pause grephs message passing ‘between. pj'oc@s_ses

sehedulers (cores)

—

mimetypes)
|lepuew

on processes

Data details and inspiration

 Data from many API’s

— ID, MFA, service, behavior * New instrumentation in VM to give us
_ heap size more data
— number of reductions * Brought all together in an organized
— queue length manner that’s easy to use
— scheduler they are on

on message passing e 2-second snapshots stored in AWS S3
— source process available for batch analytics and deeper
— target process analysis
— number of messages * time dimension explodes the power of
— number of words sent data

on schedulers

processes created
quanta count and quanta time

number of GC .
' d tail call — objects of study
true call count and tall call count * Processes, schedulers, messages,

return count — feedback loop

processes freed — speed of instrumentation and data
generation

* change of scenery for a data miner from
online advertising world

percentage of states

1.0

0.8

0.6

04

0.2

0.0

Process state distribution over time

Distribution of the states of the processes over time

X0.ms X670.ms X1472.ms X2318.ms X3164.ms X4010.ms X4856.ms X5702.ms X6548.ms X7394.ms X8240.ms

Time

Analyzing and Visualizing State Sequences in R with TraMineR
O free O running @ uncreated
O runnable @ exiting

O waiting | GC

processes

Process sequences over time

States of the processes over time

1 295 673 1092 1553 2014 2475 2936 3397 3858

X0.ms X620.ms X1363.ms X2147.ms X2931.ms X3715.ms X4499.ms X5283.ms X6067.ms X6851.ms X7635.ms X8419.ms

Time

0 free O running @ uncreated
O runnable @ exiting
0O waiting | GC

©

Looking at the data slightly differently

States of the processes over time

processes

1 295 673 1092 1553 2014 2475 2936 3397 3858

X0.ms X620.ms X1363.ms X2147.ms X2931.ms X3715.ms X4499.ms X5283.ms X6067.ms X6851.ms X7635.ms X8419.ms

Time

O free O running @ uncreated
O runnable @ exiting
O waiting B GC

=

Data Mining Opportunities

Data Mining - the non-trivial extraction of 4 Busness —» DpamA
. o . . 4" UNDERSTANDING “®— UNDERSTANDING
novel, implicit, and actionable knowledge
from large datasets \
— Extremely large datasets ‘;,' —EDATAL
— Discovery of the non-obvious f‘\l DEPLOYMENT DATE A
— Useful knowledge that can improve processes I
— Can not be done manually /

Data mining helps us identify problem areas
in ways we previously could not do

— Lots of interacting parts, doing traces of all
sorts, gaining understanding by analyzing the
data

— Instrumenting the interpreter and compiler

EVALUATION

Example

programmer stepping through code in
the debugger - this does not scale to
large number of processes or large
software

\ @&

Measuring Similarity

If we line up the data in an ordered vector, treat the vector as a pointin N
dimensional space, then similarity between data sets can be measured by
distance between the points

— One implementation is the cosine similarity
a‘*b)

0 =arccos(—= =
2
Y @AY b

k=1 k=1

Application example

— Identify transitions

* Data =the number of messages sent between any pair of sender-receiver, during a time
window

* Vector = line up the data along all possible pairs, , like "mochiweb-to-poolboy”, in fixed
order

* Data for each time window is a vector of length of NxN (N = number of processes)
* Big change in similarity between the data vectors means big shift in message passing
activity
1.000 0.999 0.923 0.999 benchrun-399

_ Benchrnarkrepeatabﬂﬁy ————— 1.000 0.917 0.999 benchrun-403
—————————— 1.000 0.910 benchrun-404

_______________ 1.000 benchrun-406

Clustering

* Grouping data points by similarity on some metric
e Algorithm: repeat until converge

— Assignment to clusters:
Cluster”; = {p : ||p — center? || <||p — center®||V j <k}

— Update cluster centers center®™D . = 1 Y p
t |Cluster(’),-|
pECluster®,

* Applications
— Often used for discovery tasks when there are little prior knowledge about

data
State sequence clustering - Cluster 1 State sequence clustering - Cluster 2 State sequence clustering - Cluster 3
! P § H;; : e
Example: Bucket the il i = E—__}f_;;
many processes to a
feW ty p e S a CC O rd i n g to State sequence clustering - Cluster 4 State sequence clustering - Cluster 5
their activities over time = g r g moe

Time series analysis

* . Use “dynamic time warping” distance to measure how well
two time series match

..........

0 10 20 30 40 50 60 70

Diff DTW
a == | a—>b |
INSERT Shift time out

« Example: DELETE Shift time in

— Count some activity per second for each process.
— Bucket processes that align well and focus the remaining outliers.

e Application: Time series clustering
— Compute DTW distance
— Apply regular or any clustering algorithm

\ @&

Network analysis: centrality

Centrality: relative importance of a vertex in the network
Computation
— Degree centrality CD(V) = degree(v)

. 028880
— Closeness centrality Co(v) = n_l IRt .
O
Y. shortest—distance(v ,u) & o Ooo%ooo
eV 2 O oY
“ @S)Ooé) O OO%
— Eigenvector centrality Cp(v) = A Y Cpo(w) < oy P
{uy}€E o e 0 .Oo
o 8 &9 05000
| o) > % e OB
— Betweenness centrality Cg(v) = > 5 * OoO <\ :) ©
1
svey O © o by P O
. . O
Application g ? °
— Detecting most important process in message passing © 5 ©
network
— Potential for identifying bottlenecks? o

\ @&

Network analysis: community detection

* Communities: groups of vertices in the o
network that are “similar” to each o °
(@) O (0}
other .
(0] OO
* Algorithms e cSesn e
@
— Minimum cut: partition the graph such % % V 6%%0% ° 4 °.
O
that the number of edges across :.: T g . - AV Te o
groups are minimal % .. 7° ° S e
— Clustering of vertices ©’S 600 o o’ °
OOC())OOOO °
— Vertex betweenness: the number of . °
shortest path between pairs of vertices °
that run through it Application

* Calculate betweenness for all . . .
— Detecting communities in

* Remove the edge with highest betweenness .
message passing network

* Recalculate betweenness for remaining
vertices — Potential for placing processes in

* Repeat until no edge remains the same community on the

@ same core?

Applying big data techniques to applications

early customers’ data and data from our own
applications and sample codes

analyses influenced the design of our product but
some specific analyses are not presented in the
Concurix website yet

all data are generated from the Concurix visualization
AMI and Concurix Runtime

all data captured and stored in AWS S3, same as any
one using Concurix AMI to study their applications

snapshot data captured at every 2 seconds

One example: one production run has 17,939
snapshots

\ @&

1600000

1200000

Applications: Concurix website under cyclic load

aggregates over time in 2 second incremental - benchrun-2003

i WWW-Concu rIX-Com g 7 | Per each time window:
| # of Live Processes
. . ‘\‘ #?1 Ac‘tivekPT‘o‘:‘e“sws‘e‘)s‘ ..
e using ChicagoBoss i e e
* moderate load of gl |
. ~N
requests simulated by _ | |
8 1 \A\ 1 J’"/‘{- "[.
Mandelbrot patterns e
g | ! 1\
- i
§ .
o - _ S
[I | I I
0 50 100 150 200
total number of reductions over time - benchrun-2003
- \ oot \ ‘A\‘ .3 A
,'\‘.. ‘h‘A\ \"/\ “\j \ “\ NA N \‘ A ﬁ‘ \ (‘ ‘\',/w‘ .
‘ ‘N‘ ,‘ / \l\: \J \/ W v\.‘“y Sy /\ “ W “V"\l‘__‘“l“w, AN
1 | a | ‘
| W, 1
N WA (" 1 “”\, | “ |) total heap sizes over time - benchrun-2003
) b\/““ /‘.‘u‘ ' [/“ V“l “\ .‘ "“A' ..“/ ﬂ“v“‘i
m |
| T T - | \ \/\/\
0 50 100 7 . W/\ Ayl [W‘/
time incremental by 2 seconds -] /\/\/\/\/\ l
g |
T T T I I
0 50 100 150 200

time incremental by 2 seconds

Study the heap sizes

e Clustering the heap sizes over time as time series

— >9000 processes in the run, time series over 300 time
snapshot windows |

— 5 clusters, map to MFA/service structure well, plus
outliers

— Similar time varying pattern wi‘t‘hin‘ clusters

|
| | | ﬂ
MW J\M \ “'\ i i k\\h"W} J\WMW”ﬂ/ﬂN”"'.“L,’ﬂ\,f
i‘l \/' \‘M et |
f

f\ ‘W |

\/W

(\ | W)‘ |
W rw V\mﬂ\ Wv \\H

AN

wpdyye

ChicagoBoss: network centrality

Vertex centrality on ChicagoBoss
Top processes by vertex degree centrality for benchrun-2003 - 96th time window

@) 9 Vertex centrality on ChicagoBoss
o Top processes by vertex betweenness centrality for benchrun-2003 - 96th time window
o Q0
So o O
OO Q O OOO @)
0 d o Q0
e o Gy 4§ O (o So
O & 8 o @) Q @) 0%
oS o (g O o 0 OO e, 0(9
© 079500 08800 OQ @ & 3:.2 % oy %
o PP o) Ne 04 >0 50 oS .
o O B o 093 07O 00 o) O
O OO O OOOO © % > Q e O =0 OO
: SER G Y, Sy
o ¢ oQ o) oO o, d" 36 C%%&o
@) o oQ L] O
e
O
@)
© o
httpc_manager/init O
- D
httpc_manager/init
supervisor/httpc_handler_sup
inet_gethost_native/server_init ; ; ;
o oot
supervisor/boss_translator_sup supervisorfranch_sup O o
supervisor/ranch_listener_sup

Study the structural changes

At time window 96 (where the spike was) compared with
time window 1834

— More message volume but no structural differences observed

Community detection on ChicagoBoss
communities of the 96th snapshot of benchrun-2003
Community detection on ChicagoBoss
communities of the 1834th snapshot of benchrun-2003

00
Oo?b o —©
o)
00 &
e
00 970 O%
ogoo ® o
< N < ¢
?38 I\ S oe e® o %
g, L
p: o § ° © go N % o
o & ce © o ® 8 0® & o
o @O o9 ° 0® ® P
% 6 e 8% o ® S = 9‘ 0 OO
o O
® e® o | e® P %Qb. s o9 0008
0 ® ®e ¢
® 9 0 ® o
© o @

comp.by.time[comp.names][i]]$redu_per_msg

comp.by.time[comp.names[i]]$redu_per_msg

1000 1500 2000 2500

500

1e+05 2e+05 3e+05 4e+05

0e+00

Detecting bottleneck based on trace data

Processes with highest number of
reductions per incoming messages

<0.89.0>--mochiweb_acceptor/init

ne[comp.names[il)$redu_per_msg

<0.157.0>--concurix_trace_send_to_viz/init

700 800 900
| | |

600
|

[1] "mochiweb_acceptor/init"

[2] "timer/init"

[3] "concurix_trace_send_to_viz/init
[4] "httpc_handler/init"

[5] "concurix_trace_send_to_S3/init”
[6] "user/server_loop"

[7] "file_io_server/server_loop"

”

<0.216.0>--httpc_handler/init

st

<0.60.0>--file_io_server/server_loop

total number of reductions over time - benchrun-2003

1600000
!

|
f SV \
NY ||f.‘ I\ | \ JAARTERY
{ v /
.

1200000
L

50 100

Index

50 100 150 200

time incremental by 2 seconds

Q&A

