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about me?

* Apache CouchDB committer and PMC member
* PSF Member

e Web Craftsman

* Doing opensource for a living
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What is refuge?

* A way to store, sync and share data
* Decentralized

* Over and On the web

* Opensource

* Built in Erlang
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Why?
| played a lot with Apache CouchDB

e A document Oriented Database

* Blobs can be attached to a document

* Replication Master-Master (P2P)

e Over and On the web

* Opensource l g
* Built in Erlang
CouchDB

relax
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What we really need at the end is

* A simple and efficient way to store any blobs

* Index or render them
* and share them among peoples or machines.

e Can work with offline devices
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L

The storage service

multi-backend: FS, Distributed FS, Haystack, S3...
GET, PUT, DELETE, LIST

SYNC

All blobs are uniquely identified. The ID

is the content-hash. <hashtype>;<hash>

handle partial uploads

HTTP transport (optionnal)
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Storage Service
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|. bootstrap: LIST (sorted) all blobs on the source
and the target and copy the blobs not on the target.

2. when in sync, keep for each (source, target)

replication a queue on the source

3. New blobs go first in the source queue
and are replicated to the destination (or re-
enumerated)

4. Blobs already on the target aren’t sent.
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* A gen_server to keep all the storage
backends configuration

e gen_storage: A behavior similiar to
gen_server but keeping a storage state

* handle conflicts in the backend. (A file
can’t be uploaded by 2 clients)

* Each consumer of the api are registered
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backend
storage

register config

start the backend

backend
storage
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/ ‘ clients

get storage main PID
backend

storage
ask for a storage

(send its pid)
register config

start the backend

backend
storage
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/ ‘ clients

(PID)
get storage main PID
backend

GET, PUT, DELETE, LIST

storage
ask for a storage

(send its pid)
register config

start the backend

backend
storage
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How the sync works in Erlang

* Queues are kept in memory

* A process / queue

* On update (or delete) an event is

broadcasted to each queues
* make sure the target is always up
* enumerate is cheap (we only compare

blobs ids)
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How to use the blobs?

* ho metadata on the disk.

* no history
* just blobs
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How to use the blobs?

* use refs (aka permalinks) , link to to your

data
* index your data

e share them
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Example: backup a folder

* 3 kinds of blobs: 2 schema & the binary
| “commit” schema to describe the file if
needed
| “tree” schema to describe a folder
A schema is a blob.

| ref to keep track of latest tree

similar to git! yes.
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blobid": "blobobid",

orev": "prevref or null”
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"filename": {
“blobid: "blobbid",
“type”: “b-I_Ob”

h

"foldername": {
“blobid: "blobbid",
“type”: “tree”
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What about my blog

* A post is a blob
* A category is a blob linking to posts (like a

tree)

* home, either blobs / date indexed or
create a special blob linking to those you

want on the home
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Indexer Service

Indexer

- e send data (replicate to)

\ BLOB Server
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* “just” replicate to your index

* An indexer receive - (biobid, blob, time)"
from the replication queue in quasi RT or
enumerate it.

* can be any kind of index: sql, apache
couchdb, a document oriented DB, an FTS

(like elasticsearch) ...
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* Mostly work like a blob server

* except it only pass the data to the indexer

* Possibility to transform the data before

indexing it (mapping)
* No JS (by default): but a simple DSL allows
you to map fields or use scripts (luerl, ...)

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



Behind the scene

* Use a websockets (actually sockjs) or tcp

* Pass simple messages (json right now)

* Each queue is load balanced on each
reader (to allows index balancing and stuff
like it)
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index updater ‘ ‘

consume reader ]
queue clients
spawn &
queue reader

watch queue

T query
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®

get data

blob
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The refuge Node

* Frontend to blobs servers and indexers
* manage blobs claims and access

e share collections of data and for some

allows remote queries/filtering.
e HTTP REST API
* hackney & wsock
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USER CONTROL

PRIVATE CONTENT PEER REST SERVER
Create collections.

Expose query API

Give access to blobs &

Indexer Service check permissions

N

Storage Service
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The hub

* Each refuge node can open a connection

to an hub (websocket)

* Once connected a node identified itself
with its identity

* An heartbeat (NOP) is sent to maintain
the connection

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



* true decentralized system
* Like epmd but different

* Once found, nodes are directly connected

* A node can authenticate against a
signature or a key (oauth bearer token)
* webfinger & host-meta
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Register node &
data channels
direct connection

PRIVATE CONTENT PEER REST SERVER
Create collections.

Expose query API
Give access to blobs &
Indexer Service check permissions

Storage Service
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USER CONTROL
PRIVATE CONTENT PEER REST SERVER
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* Each refuge node open a connection to an

hub (websocket)

* A node can connect to multiple hubs

* Once connected a node identified itself
with is identity

* An heartbeat (NOP) is sent to maintain

the connection
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o Coffer released next week

* Refuge released in april 2013
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More things...
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The refuge box

arm platform

standalone installation of refuge

internet of things

dns-sd & udp discovery
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Erlang Factory SF Bay Area 2013 - Benoit Chesneau




@benoitc
http://refuge.io

Thanks to
Laurent (@lolograph) for the website & logo design
Nicolas (@nrdufour) for Code and Ideas

Others for their feedback
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http://refuge.io
http://refuge.io

e 3 document oriented database

* multiple backends (sqlite3, leveldb,
hanoidb, couchdb)

* can replicate with Apache CouchDB
* designed for embedded device
* works with coffer

e used as a basic indexer
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simple api

create _db(DbName, [{backend, Name}, {default blob_ backend} ...])
-> {ok, Db} | {error, Reason}

open_db(DbName) -> {ok, Db} | {error, Reason}
save _doc (Db, Id, Props) -> {ok, #doc{}} | {error, Reason}.

save_doc (Db, Id, Props, Options) -> {ok, #doc{}} | {error, Reason}.
open_doc (Db, DoclId) -> {ok, #doc{}} | {error, Reason}. (always last rev)
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