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about me?

• Apache CouchDB committer and PMC member

• PSF Member

• Web Craftsman

• Doing opensource for a living
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What is refuge?

• A way to store, sync and share data

• Decentralized

• Over and On the web

• Opensource

• Built in Erlang
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Why?

• A document Oriented Database

• Blobs can be attached to a document

• Replication Master-Master (P2P)

• Over and On the web

• Opensource

• Built in Erlang

I played a lot with Apache CouchDB
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But

• A simple and efficient way to store any blobs 

• Index or render them

• and share them among peoples or machines.

• Can work with offline devices

What we really need at the end is
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Coffer

• multi-backend: FS, Distributed FS, Haystack, S3...
• GET, PUT, DELETE, LIST
• SYNC
• All blobs are uniquely identified. The ID 

is the content-hash. <hashtype>;<hash>
• handle partial uploads
• HTTP transport (optionnal)

The storage service
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storage server

Blob 
Storage

S3, FS, ...

Blob 
Storage

storage server
sync

Storage Service

REST API (HTTPs or any transport)
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How the synchronization works?

1. bootstrap: LIST (sorted) all blobs on the source 
and the target and copy the blobs not on the target.

2. when in sync, keep for each (source, target) 
replication a queue on the source

3. New blobs go first in the source queue 
and are replicated to the destination (or re-
enumerated)

4. Blobs already on the target aren’t sent.
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How it woks in Erlang 

• A gen_server to keep all the storage 
backends configuration

• gen_storage:  A behavior similiar to 
gen_server but keeping a storage state

• handle conflicts in the backend. (A file 
can’t be uploaded by 2 clients)

• Each consumer of the api are registered
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server
backend 
storage

backend 
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start the backend

register config
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backend 
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backend 
storage

start the backend

clients

register config

get storage main PID

ask for a storage
(send its pid)
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How the sync works in Erlang

• Queues are kept in memory

• A process / queue

• On update (or delete) an event is 
broadcasted to each queues

• make sure the target is always up

• enumerate is cheap (we only compare 
blobs ids)
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How to use the blobs?

• no metadata on the disk.

• no history

• just blobs
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How to use the blobs?

• use refs (aka permalinks) , link to to your 
data

• index your data

• share them
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Example: backup a folder

• 3 kinds of blobs:  2 schema & the binary

• 1 “commit” schema to describe the file if 
needed

• 1 “tree” schema to describe a folder

• A schema is a blob.

• 1 ref to keep track of latest tree

• similar to git? yes. 
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file

{
    "blobid": "blobobid",
    "prev": "prevref or null"
}



Erlang Factory SF Bay Area 2013 - Benoît Chesneau

tree

{
    "filename": {
        “blobid: "blobbid",
        “type”: “blob”
    },
    "foldername": {
        “blobid: "blobbid",
        “type”: “tree”
    }
}
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What about my blog

• A post is a blob

• A category is a blob linking to posts (like a 
tree)

• home, either blobs / date indexed or 
create a special blob linking to those you 
want on the home
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Index your content

• “just” replicate to your index

• An indexer receive `(blobid, blob, time)` 
from the replication queue in quasi RT or 
enumerate it.

• can be any kind of index: sql,  apache 
couchdb, a document oriented DB, an FTS 
(like elasticsearch) ....
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Behind the scene

• Mostly work like a blob server

• except it only pass the data to the indexer

• Possibility to transform the data before 
indexing it (mapping)

• No JS (by default): but a simple DSL allows 
you to map fields or use scripts (luerl, ... )
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Behind the scene

• Use a websockets (actually sockjs) or tcp

• Pass simple messages (json right now)

• Each queue is load balanced on each 
reader (to allows index balancing and stuff 
like it)
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The refuge Node

• Frontend to blobs servers and indexers

• manage blobs claims and access

• share collections of data and for some 
allows remote queries/filtering.

• HTTP REST API 

• hackney & wsock
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The hub

• Each refuge node can open a connection 
to an hub (websocket)

• Once connected a node identified itself 
with its identity

• An heartbeat (NOP) is sent to maintain 
the connection
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The hub

• true decentralized system

• Like epmd but different

• Once found, nodes are directly connected

• A node can authenticate against a 
signature or a key (oauth bearer token)

• webfinger & host-meta
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The hub

• Each refuge node open a connection to an 
hub (websocket)

• A node can connect to multiple hubs

• Once connected a node identified itself 
with is identity

• An heartbeat (NOP) is sent to maintain 
the connection
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Status

• Coffer released next week

• Refuge released in april 2013
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More things...
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The refuge box

• arm platform

• standalone installation of refuge

• internet of things

• dns-sd & udp discovery
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?
@benoitc

http://refuge.io

Thanks to
Laurent (@lolograph) for the website & logo design

Nicolas (@nrdufour) for Code and Ideas
Others for their feedback

http://refuge.io
http://refuge.io
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introducing blanket

• a document oriented database

• multiple backends (sqlite3, leveldb, 
hanoidb, couchdb)

• can replicate with Apache CouchDB

• designed for embedded device

• works with coffer

• used as a basic indexer

• a document oriented database

• multiple backends (sqlite3, leveldb, 
hanoidb, couchdb)

• can replicate with Apache CouchDB

• designed for embedded device

• works with coffer

• used as a basic indexer
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simple api

create_db(DbName, [{backend, Name}, {default_blob_backend} ...]) 
             -> {ok, Db} | {error, Reason}

open_db(DbName) -> {ok, Db} | {error, Reason}

save_doc(Db, Id, Props) -> {ok, #doc{}} | {error, Reason}.
save_doc(Db, Id, Props, Options) -> {ok, #doc{}} | {error, Reason}. 
open_doc(Db, DocId) -> {ok, #doc{}} | {error, Reason}. (always last rev)


