
Building a decentralized data
platform in Erlang

Erlang Factory SF Bay Area 2013
Benoît Chesneau

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

about me?

• Apache CouchDB committer and PMC member

• PSF Member

• Web Craftsman

• Doing opensource for a living

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

What is refuge?

• A way to store, sync and share data

• Decentralized

• Over and On the web

• Opensource

• Built in Erlang

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

Why?

• A document Oriented Database

• Blobs can be attached to a document

• Replication Master-Master (P2P)

• Over and On the web

• Opensource

• Built in Erlang

I played a lot with Apache CouchDB

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

But

• A simple and efficient way to store any blobs

• Index or render them

• and share them among peoples or machines.

• Can work with offline devices

What we really need at the end is

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

Coffer

• multi-backend: FS, Distributed FS, Haystack, S3...
• GET, PUT, DELETE, LIST
• SYNC
• All blobs are uniquely identified. The ID

is the content-hash. <hashtype>;<hash>
• handle partial uploads
• HTTP transport (optionnal)

The storage service

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

storage server

Blob
Storage

S3, FS, ...

Blob
Storage

storage server
sync

Storage Service

REST API (HTTPs or any transport)

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

How the synchronization works?

1. bootstrap: LIST (sorted) all blobs on the source
and the target and copy the blobs not on the target.

2. when in sync, keep for each (source, target)
replication a queue on the source

3. New blobs go first in the source queue
and are replicated to the destination (or re-
enumerated)

4. Blobs already on the target aren’t sent.

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

How it woks in Erlang

• A gen_server to keep all the storage
backends configuration

• gen_storage: A behavior similiar to
gen_server but keeping a storage state

• handle conflicts in the backend. (A file
can’t be uploaded by 2 clients)

• Each consumer of the api are registered

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

server
backend
storage

backend
storage

start the backend

register config

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

server
backend
storage

backend
storage

start the backend

clients

register config

get storage main PID

ask for a storage
(send its pid)

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

server
backend
storage

backend
storage

start the backend

clients
GET, PUT, DELETE, LIST

register config

(PID)

get storage main PID

ask for a storage
(send its pid)

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

How the sync works in Erlang

• Queues are kept in memory

• A process / queue

• On update (or delete) an event is
broadcasted to each queues

• make sure the target is always up

• enumerate is cheap (we only compare
blobs ids)

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

How to use the blobs?

• no metadata on the disk.

• no history

• just blobs

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

How to use the blobs?

• use refs (aka permalinks) , link to to your
data

• index your data

• share them

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

Example: backup a folder

• 3 kinds of blobs: 2 schema & the binary

• 1 “commit” schema to describe the file if
needed

• 1 “tree” schema to describe a folder

• A schema is a blob.

• 1 ref to keep track of latest tree

• similar to git? yes.

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

file

{
 "blobid": "blobobid",
 "prev": "prevref or null"
}

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

tree

{
 "filename": {
 “blobid: "blobbid",
 “type”: “blob”
 },
 "foldername": {
 “blobid: "blobbid",
 “type”: “tree”
 }
}

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

What about my blog

• A post is a blob

• A category is a blob linking to posts (like a
tree)

• home, either blobs / date indexed or
create a special blob linking to those you
want on the home

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

SQL DB Document
Oriented DB

FTS

Indexer

BLOB Server

send data (replicate to)

query

Indexer Service

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

Index your content

• “just” replicate to your index

• An indexer receive `(blobid, blob, time)`
from the replication queue in quasi RT or
enumerate it.

• can be any kind of index: sql, apache
couchdb, a document oriented DB, an FTS
(like elasticsearch)

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

Behind the scene

• Mostly work like a blob server

• except it only pass the data to the indexer

• Possibility to transform the data before
indexing it (mapping)

• No JS (by default): but a simple DSL allows
you to map fields or use scripts (luerl, ...)

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

Behind the scene

• Use a websockets (actually sockjs) or tcp

• Pass simple messages (json right now)

• Each queue is load balanced on each
reader (to allows index balancing and stuff
like it)

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

Indexer

blob
server

spawn &
monitorqueue reader

query

watch queue

get data

index updater

consume reader
queue clients

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

The refuge Node

• Frontend to blobs servers and indexers

• manage blobs claims and access

• share collections of data and for some
allows remote queries/filtering.

• HTTP REST API

• hackney & wsock

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

storage server

Blob
Storage

storage server
syn

Storage Service

REST API (HTTPs or any transport)

send data (replicate to)

SQL
DB

Document
Oriented

DB

FTS

Indexer

query

Indexer Service

USER CONTROL

Blob
Storage

PRIVATE CONTENT

Give access to blobs &
check permissions

Create collections.
Expose query API

PEER REST SERVER
refuge
node

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

The hub

• Each refuge node can open a connection
to an hub (websocket)

• Once connected a node identified itself
with its identity

• An heartbeat (NOP) is sent to maintain
the connection

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

The hub

• true decentralized system

• Like epmd but different

• Once found, nodes are directly connected

• A node can authenticate against a
signature or a key (oauth bearer token)

• webfinger & host-meta

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

storage server

Blob
Storage

storage server
syn

Storage Service

REST API (HTTPs or any transport)

send data (replicate to)

SQL
DB

Document
Oriented

DB

FTS

Indexer

query

Indexer Service

USER CONTROL

Blob
Storage

PRIVATE CONTENT
refuge
node

refuge
node

refuge
node

hub

Give access to blobs &
check permissions

Create collections.
Expose query API

PEER REST SERVER

Search

Register node &
data channels

direct connection

hub

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

storage server

Blob
Storage

storage server
syn

Storage Service

REST API (HTTPs or any transport)

send data (replicate to)

SQL
DB

Document
Oriented

DB

FTS

Indexer

query

Indexer Service

USER CONTROL

Blob
Storage

PRIVATE CONTENT
refuge
node

refuge
node

refuge
node

hub

Give access to blobs &
check permissions

Create collections.
Expose query API

PEER REST SERVER

direct connection

hub

direct connection

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

The hub

• Each refuge node open a connection to an
hub (websocket)

• A node can connect to multiple hubs

• Once connected a node identified itself
with is identity

• An heartbeat (NOP) is sent to maintain
the connection

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

Status

• Coffer released next week

• Refuge released in april 2013

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

More things...

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

The refuge box

• arm platform

• standalone installation of refuge

• internet of things

• dns-sd & udp discovery

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

?
@benoitc

http://refuge.io

Thanks to
Laurent (@lolograph) for the website & logo design

Nicolas (@nrdufour) for Code and Ideas
Others for their feedback

http://refuge.io
http://refuge.io

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

introducing blanket

• a document oriented database

• multiple backends (sqlite3, leveldb,
hanoidb, couchdb)

• can replicate with Apache CouchDB

• designed for embedded device

• works with coffer

• used as a basic indexer

• a document oriented database

• multiple backends (sqlite3, leveldb,
hanoidb, couchdb)

• can replicate with Apache CouchDB

• designed for embedded device

• works with coffer

• used as a basic indexer

Erlang Factory SF Bay Area 2013 - Benoît Chesneau

simple api

create_db(DbName, [{backend, Name}, {default_blob_backend} ...])
 -> {ok, Db} | {error, Reason}

open_db(DbName) -> {ok, Db} | {error, Reason}

save_doc(Db, Id, Props) -> {ok, #doc{}} | {error, Reason}.
save_doc(Db, Id, Props, Options) -> {ok, #doc{}} | {error, Reason}.
open_doc(Db, DocId) -> {ok, #doc{}} | {error, Reason}. (always last rev)

