. Refuge

Building a decentralized data
platform in Erlang

Erlang Factory SF Bay Area 2013
Benoit Chesneau




about me?

* Apache CouchDB committer and PMC member
* PSF Member

e Web Craftsman

* Doing opensource for a living

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



What is refuge?

* A way to store, sync and share data
* Decentralized

* Over and On the web

* Opensource

* Built in Erlang

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



Why?
| played a lot with Apache CouchDB

e A document Oriented Database

* Blobs can be attached to a document

* Replication Master-Master (P2P)

e Over and On the web

* Opensource l g
* Built in Erlang
CouchDB

relax

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



What we really need at the end is

* A simple and efficient way to store any blobs

* Index or render them
* and share them among peoples or machines.

e Can work with offline devices

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



L

The storage service

multi-backend: FS, Distributed FS, Haystack, S3...
GET, PUT, DELETE, LIST

SYNC

All blobs are uniquely identified. The ID

is the content-hash. <hashtype>;<hash>

handle partial uploads

HTTP transport (optionnal)

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



Storage Service

=

=g
\ / REST API (HTTPs or any transport)

sync
storage server < > storage server

[
-

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



|. bootstrap: LIST (sorted) all blobs on the source
and the target and copy the blobs not on the target.

2. when in sync, keep for each (source, target)

replication a queue on the source

3. New blobs go first in the source queue
and are replicated to the destination (or re-
enumerated)

4. Blobs already on the target aren’t sent.

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



* A gen_server to keep all the storage
backends configuration

e gen_storage: A behavior similiar to
gen_server but keeping a storage state

* handle conflicts in the backend. (A file
can’t be uploaded by 2 clients)

* Each consumer of the api are registered

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



backend
storage

register config

start the backend

backend
storage

Erlang Factory SF Bay Area 2013 - Benoit Chesneau




/ ‘ clients

get storage main PID
backend

storage
ask for a storage

(send its pid)
register config

start the backend

backend
storage

Erlang Factory SF Bay Area 2013 - Benoit Chesneau




/ ‘ clients

(PID)
get storage main PID
backend

GET, PUT, DELETE, LIST

storage
ask for a storage

(send its pid)
register config

start the backend

backend
storage

Erlang Factory SF Bay Area 2013 - Benoit Chesneau




How the sync works in Erlang

* Queues are kept in memory

* A process / queue

* On update (or delete) an event is

broadcasted to each queues
* make sure the target is always up
* enumerate is cheap (we only compare

blobs ids)

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



How to use the blobs?

* ho metadata on the disk.

* no history
* just blobs

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



How to use the blobs?

* use refs (aka permalinks) , link to to your

data
* index your data

e share them

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



Example: backup a folder

* 3 kinds of blobs: 2 schema & the binary
| “commit” schema to describe the file if
needed
| “tree” schema to describe a folder
A schema is a blob.

| ref to keep track of latest tree

similar to git! yes.

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



blobid": "blobobid",

orev": "prevref or null”

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



"filename": {
“blobid: "blobbid",
“type”: “b-I_Ob”

h

"foldername": {
“blobid: "blobbid",
“type”: “tree”

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



What about my blog

* A post is a blob
* A category is a blob linking to posts (like a

tree)

* home, either blobs / date indexed or
create a special blob linking to those you

want on the home

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



Indexer Service

Indexer

- e send data (replicate to)

\ BLOB Server

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



* “just” replicate to your index

* An indexer receive - (biobid, blob, time)"
from the replication queue in quasi RT or
enumerate it.

* can be any kind of index: sql, apache
couchdb, a document oriented DB, an FTS

(like elasticsearch) ...

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



* Mostly work like a blob server

* except it only pass the data to the indexer

* Possibility to transform the data before

indexing it (mapping)
* No JS (by default): but a simple DSL allows
you to map fields or use scripts (luerl, ...)

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



Behind the scene

* Use a websockets (actually sockjs) or tcp

* Pass simple messages (json right now)

* Each queue is load balanced on each
reader (to allows index balancing and stuff
like it)

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



index updater ‘ ‘

consume reader ]
queue clients
spawn &
queue reader

watch queue

T query
\
®

get data

blob
server

Erlang Factory SF Bay Area 2013 - Benoit Chesneau




The refuge Node

* Frontend to blobs servers and indexers
* manage blobs claims and access

e share collections of data and for some

allows remote queries/filtering.
e HTTP REST API
* hackney & wsock

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



USER CONTROL

PRIVATE CONTENT PEER REST SERVER
Create collections.

Expose query API

Give access to blobs &

Indexer Service check permissions

N

Storage Service

1
]
1
11
(X3
°
1

REST API (HTTPs or any transport)

\

send data (replicate to)

=
4 K
orage server

syn
st 4—) storage server

= =
&S

Erlang Factory SF Bay Area 2013 - Benoit Chesneau




The hub

* Each refuge node can open a connection

to an hub (websocket)

* Once connected a node identified itself
with its identity

* An heartbeat (NOP) is sent to maintain
the connection

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



* true decentralized system
* Like epmd but different

* Once found, nodes are directly connected

* A node can authenticate against a
signature or a key (oauth bearer token)
* webfinger & host-meta

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



Register node &
data channels
direct connection

PRIVATE CONTENT PEER REST SERVER
Create collections.

Expose query API
Give access to blobs &
Indexer Service check permissions

Storage Service

- \ e— [@I
\ = \ REST API (HTTPs or any transport)
orage server

4—) storage server

st
send data (replicate to)

= =
2S

Erlang Factory SF Bay Area 2013 - Benoit Chesneau




USER CONTROL
PRIVATE CONTENT PEER REST SERVER

Erlang Factory SF Bay Area 2013 - Benoit Chesneau




* Each refuge node open a connection to an

hub (websocket)

* A node can connect to multiple hubs

* Once connected a node identified itself
with is identity

* An heartbeat (NOP) is sent to maintain

the connection

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



o Coffer released next week

* Refuge released in april 2013

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



More things...

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



The refuge box

arm platform

standalone installation of refuge

internet of things

dns-sd & udp discovery

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



Erlang Factory SF Bay Area 2013 - Benoit Chesneau Refuge




® 00 Refuge | Data should be

4~ CHh file://localhost/Users/benoitc/GoogleX20Drive /refuge /www/index.htm| L) [E ‘: O —

rErlang R/Erlang In: Protocol — The Cut Shapesmith.net CodeBox — Code & B Cmvault: gmail bac B Xiki » ;] Other Bookmarks o Apps

Suspendisse interdum ultrices
o placerat. Proin orci lacus, Refuge

Box et, bibendum vel tellus.

More details

About Refuge Latest news Lastestversion

Suspendisse interd

i o Title of the new
Proin orci lacus, pharetra eget = Since 4mn
imperdiet et, bibendum vel tellus. Sed E

dolor tellus, imperdiet non tristique v

vel ante

Erlang Factory SF Bay Area 2013 - Benoit Chesneau




@benoitc
http://refuge.io

Thanks to
Laurent (@lolograph) for the website & logo design
Nicolas (@nrdufour) for Code and Ideas

Others for their feedback

Erlang Factory SF Bay Area 2013 - Benoit Chesneau


http://refuge.io
http://refuge.io

e 3 document oriented database

* multiple backends (sqlite3, leveldb,
hanoidb, couchdb)

* can replicate with Apache CouchDB
* designed for embedded device
* works with coffer

e used as a basic indexer

Erlang Factory SF Bay Area 2013 - Benoit Chesneau



simple api

create _db(DbName, [{backend, Name}, {default blob_ backend} ...])
-> {ok, Db} | {error, Reason}

open_db(DbName) -> {ok, Db} | {error, Reason}
save _doc (Db, Id, Props) -> {ok, #doc{}} | {error, Reason}.

save_doc (Db, Id, Props, Options) -> {ok, #doc{}} | {error, Reason}.
open_doc (Db, DoclId) -> {ok, #doc{}} | {error, Reason}. (always last rev)

Erlang Factory SF Bay Area 2013 - Benoit Chesneau




