
 1

JPGs and 3GPs and AMRs
Oh My!

Rick Reed
WhatsApp

Erlang Factory SF
March 21, 2013

 2

About me ...

Joined server team at WhatsApp in 2011

No prior Erlang experience

Focus on systems scalability

 3

Religious Moments

 4

Religious Moments

White smoke

Pope Francis

 5

Religious Moments

Barcelona v.
AC Milan

White smoke

Pope Francis

 6

Pictures too ...

 7

Overview

The multimedia problem

Legacy implementation

New architecture

Challenges and workarounds

Results and conclusions

 8

The Problem

Multimedia messages (MMS)

Image

Video

Audio

Some recorded on sender's phone, many not

Group messaging

Multi-platform support (transcoding)

Store-and-forward, no archiving

 9

The Problem

A good (and fun) problem to have:

More users

More usage per user

More multimedia as a % of usage per user

 10

The Problem

 11

The Problem

Legacy system issues

Scalability

Ad-hoc transcoding

Not Erlang

 12

Goals

Scalability

Reliability

Improved user experience

 13

Legacy MMS Implementation

Lighttpd + PHP

Dual hexcore with 12 x SATA JBOD

DNS round-robin

No reference counting

Time-based media expiration

Client-initiated (server-hosted) transcoding

 14

New MMS Architecture

New features

Resumable uploads and downloads

Reference counting

Upload de-dup

Server-controlled transcoding

Server-side “trimming”

 15

New MMS Architecture

New database

Objects, References, Transcodings

mnesia

disc_copies tables

Partitioned islands and fragmented tables

All operations run async_dirty

Use key hashing to collapse all ops per key
to a single process

 16

Partition 1
Partition 1

Partition 1

New MMS Architecture

Partition 1

Mnesia Island 1

Mnesia Island 2

Frag 1, 17, 33, 49, 65, …
Frag 2, 18, 34, 50, 66, ...

Partition 3

Partition 5

Partition 7

Partition 1
Partition 1

Partition 1
Partition 2
Frag 2, 18, 34, 50, 66, …
Frag 1, 17, 33, 49, 65

Partition 4

Partition 6

Partition 8

replication

Partition 1
Partition 1

Partition 1
Partition 9
Frag 9, 25, 41, 57, 73, …
Frag 10, 26, 42, 58, 74, ...

Partition 11

Partition 13

Partition 15

Partition 1
Partition 1

Partition 1
Partition 10
Frag 10, 26, 42, 58, 74, …
Frag 9, 25, 41, 57, 73, ...

Partition 12

Partition 14

Partition 16

replication

 17

New MMS Architecture

Integration with Erlang messaging cluster

Upload de-dup

Upload load balancing

Reference management (create, ack)

 18

New MMS Architecture

HTTP upload/download service

Preserves some commonality w/ legacy system

Good protocol support
Content-type

Ranges

Some drawbacks
SSL negotiation delay

Support lacking on some client platforms

 19

New MMS Architecture

Web server: YAWS

Nice balance of support for
Serving media files

Programmability

Only handful of patches for our environment

Runs embedded alongside other server procs

 20

New MMS Architecture

Object storage

Simple file-per-object (FreeBSD UFS2)
JBOD (directly attached to motherboard)

Image: 6xSSD

Audio/Video: 6xSATA

Hashed directory tree (< 1k files in leaf dir)

16k blocksize

Same storage used for transient message store
Lots of experience (~4B cycles/day)

Long-term predictability

 21

New MMS Architecture

Media identification

erl_img triage (NIF)

MediaInfo (fork)

ffprobe (fork)

Transcoding

ffmpeg (fork)

Custom clone of os:cmd to bypass shell

 22

New MMS Architecture

Proxy misdirected requests

We hand out specific hostnames

Objects may get archived or moved

Acts as reverse proxy to host with content

yaws_revproxy
Somewhat difficult to set args correctly

Otherwise, works great

 23

New MMS Architecture

Maintenance processes

Reaper (drop ack'ed and old references)

Reclaim (drop unreferenced objects w/ delay)

Archiver (move old images to slow storage)

Clean (remove stranded files)

 24

New MMS Architecture

Hardware Specs

Dual octo-core E5-2690 (32 logical CPUs)

256GB RAM (128GB for A/V hosts)

6 x 800GB SSD (4TB SATA for A/V hosts)

2 x dual link-agg gig-E (public, private)

 25

New MMS Architecture

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

studmmd

chat
chat

chat
chat

chat
chatd

yaws

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmdstudmmd

yaws

images/db audio/video

https
upload/download

wa chat protocol

Erlang
distribution

archiving

ssd sata

client

 26

Challenges and Workarounds

SSL

Connection bottleneck (throughput < RSA rate)

Offloaded SSL termination to stud

Patched YAWS to accept HaProxy-style header

Request rate now limited by RSA rate

Need multiple loopback aliases for >64k ports

 27

Challenges and Workarounds

sendfile

sendfile & async threads don't mix
On FreeBSD, at least

Long BEAM stalls

Tried both file:sendfile and YAWS driver

Disabled sendfile in YAWS

Run +A 1024

Plenty of memory bandwidth on our hosts

file:///sendfile

 28

Challenges and Workarounds

Mnesia table sizes

~250M objects, ~750M references per host

Limits to how much RAM we can stuff in a host

Moved from naïve/native to packed format
Packed record fields into 60-bit integers

Packed {bin1, bin2} key into <<bin1, bin2>>

encrypt(filehash) <=> id instead of hash() => id

Record storage size reduced ~45%

 29

Challenges and Workarounds

Each host:
==
Active Tables Local Copy Type Records Bytes
--
mmd_obj2(128) unknown 242,325,152 46,859,527,336
mmd_reclaim disc_copies 6,301,921 930,213,336
mmd_ref3(128) unknown 759,076,825 138,261,758,224
mmd_upload disc_copies 2,069,134 413,827,448
mmd_xcode2(128) unknown 8,477,025 2,648,887,144
schema disc_copies 387 444,384
--
Total 1,018,250,444 189,114,657,872
==

 30

Challenges and Workarounds

Slow reference checking

Ordered set keyed by Id & Ref concatenated

Naïve: length(get_refs(Id)) == 0

Fast:
case mnesia:next(Tab, Id) of

<<Id:?ID_LEN/binary, _RefId:?REF_LEN/binary>> → true
_ → false

end

 31

Challenges and Workarounds

mnesia:select by background procs

Returned lists of >>1M entries

Originally put in scratch ets table for iteration

Select with continuation much better

 32

Challenges and Workarounds

Db migrations

Converting record formats while online

Lazy migration:
Read: read(new), if missing read(old)

Write: write(new), delete(old)

Delete: delete(new), delete(old)

No transactions
Hash key to specific process on specific host

Final batch conversion, then normal behavior

 33

Challenges and Workarounds

Bandwidth

Users hungry to consume and share media

Single host easily fills 2x1g aggregated uplink

Dealing with soaring bandwidth bill
Cap and manage various media parameters

(video dimensions/bitrate/framerate, audio
sampling rate/bitrate, etc.)

Count downloads and force down-conversion

 34

Challenges and Workarounds

Lingering issues:

Storage redundancy

Memory leakage on db hosts (fragmentation?)

mnesia schema ops under load

Tweaking transcodings for playback issues

Managing transcode CPU

Capacity planning/management

 35

Challenges and Workarounds

 36

Challenges and Workarounds

 37

Results

Peak Scalability

214M images in a day

8.8K images/sec downloaded

29 Gb/sec output bandwidth

 38

Results

Holiday week

 39

Results

Erlang just fine for pushing (lots of) bytes

But not good at everything

 40

Results

Example: Great for transcode configs

Various transcoding tweaks require code

Ability to deploy changes quickly

Raises value of server-initiated transcodes

 41

Results

get_download_defaults (#mmd_client{os = android}, Type, video) →
 #mmd_parms{type=opt_default(Type, [video_mp4, video_3gp]),
 vcodec=[h264, mpeg4, h263],
 width=720, height=480,
 vbitrate=?VBITRATE_MAX,
 acodec=[aac, amrnb]};

get_download_defaults (#mmd_client{os = iphone, device = Device}, Type, video) →
 Parms = #mmd_parms{type=opt_default(Type, [video_mp4, video_quicktime]),
 vcodec=[h264, mpeg4],
 width=480, height=360, fps=15,
 vbitrate=?VBITRATE_MAX,
 acodec=aac},
 if Device =:= "iPhone_5";
 Device =:= "iPhone_4S";
 Device =:= "iPhone_4";
 Device =:= "iPhone_4_VZW" →
 Parms#mmd_parms{width=1280, height=720, fps=30};
 true →
 Parms
 end;

 42

Results

 43

Questions?

rr@ whatsapp.com

 44

The Problem

 45

Challenges and Workarounds

	Title
	Overview
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

