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About me ...

Joined server team at WhatsApp in 2011

No prior Erlang experience

Focus on systems scalability
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Religious Moments
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Religious Moments

White smoke

Pope Francis
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Religious Moments

Barcelona v. 
AC Milan

White smoke

Pope Francis
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Pictures too ...
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Overview

The multimedia problem

Legacy implementation

New architecture

Challenges and workarounds

Results and conclusions
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The Problem

Multimedia messages (MMS)

Image

Video

Audio

Some recorded on sender's phone, many not

Group messaging

Multi-platform support (transcoding)

Store-and-forward, no archiving
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The Problem

A good (and fun) problem to have:

More users

More usage per user

More multimedia as a % of usage per user
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The Problem
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The Problem

Legacy system issues

Scalability

Ad-hoc transcoding

Not Erlang
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Goals

Scalability

Reliability

Improved user experience
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Legacy MMS Implementation

Lighttpd + PHP

Dual hexcore with 12 x SATA JBOD

DNS round-robin

No reference counting

Time-based media expiration

Client-initiated (server-hosted) transcoding
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New MMS Architecture

New features

Resumable uploads and downloads

Reference counting

Upload de-dup

Server-controlled transcoding

Server-side “trimming”
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New MMS Architecture

New database

Objects, References, Transcodings

mnesia

disc_copies tables

Partitioned islands and fragmented tables

All operations run async_dirty

Use key hashing to collapse all ops per key 
to a single process
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Partition 1
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New MMS Architecture

Partition 1

Mnesia Island 1

Mnesia Island 2

Frag 1, 17, 33, 49, 65, …
Frag 2, 18, 34, 50, 66, ...

Partition 3

Partition 5

Partition 7
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Frag 2, 18, 34, 50, 66, …
Frag 1, 17, 33, 49, 65
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Partition 6

Partition 8

replication
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Frag 9, 25, 41, 57, 73, …
Frag 10, 26, 42, 58, 74, ...
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Partition 15
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Frag 10, 26, 42, 58, 74, …
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Partition 14
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replication
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New MMS Architecture

Integration with Erlang messaging cluster

Upload de-dup

Upload load balancing

Reference management (create, ack)
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New MMS Architecture

HTTP upload/download service

Preserves some commonality w/ legacy system

Good protocol support
Content-type

Ranges

Some drawbacks
SSL negotiation delay

Support lacking on some client platforms
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New MMS Architecture

Web server: YAWS

Nice balance of support for
Serving media files

Programmability

Only handful of patches for our environment

Runs embedded alongside other server procs
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New MMS Architecture

Object storage

Simple file-per-object (FreeBSD UFS2)
JBOD (directly attached to motherboard)

Image: 6xSSD

Audio/Video: 6xSATA

Hashed directory tree (< 1k files in leaf dir)

16k blocksize

Same storage used for transient message store
Lots of experience (~4B cycles/day)

Long-term predictability
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New MMS Architecture

Media identification

erl_img triage (NIF)

MediaInfo (fork)

ffprobe (fork)

Transcoding

ffmpeg (fork)

Custom clone of os:cmd to bypass shell
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New MMS Architecture

Proxy misdirected requests

We hand out specific hostnames

Objects may get archived or moved

Acts as reverse proxy to host with content

yaws_revproxy
Somewhat difficult to set args correctly

Otherwise, works great
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New MMS Architecture

Maintenance processes

Reaper (drop ack'ed and old references)

Reclaim (drop unreferenced objects w/ delay)

Archiver (move old images to slow storage)

Clean (remove stranded files)
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New MMS Architecture

Hardware Specs

Dual octo-core E5-2690 (32 logical CPUs)

256GB RAM (128GB for A/V hosts)

6 x 800GB SSD (4TB SATA for A/V hosts)

2 x dual link-agg gig-E (public, private)
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New MMS Architecture

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd
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yaws mmd
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mnesia

studmmd

chat
chat

chat
chat

chat
chatd

yaws

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd
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mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmd

mnesia

yaws mmdstudmmd

yaws

images/db audio/video

https 
upload/download

wa chat protocol

Erlang
distribution

archiving

ssd sata

client
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Challenges and Workarounds

SSL

Connection bottleneck (throughput < RSA rate)

Offloaded SSL termination to stud

Patched YAWS to accept HaProxy-style header

Request rate now limited by RSA rate

Need multiple loopback aliases for >64k ports
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Challenges and Workarounds

sendfile

sendfile & async threads don't mix
On FreeBSD, at least

Long BEAM stalls

Tried both file:sendfile and YAWS driver

Disabled sendfile in YAWS

Run +A 1024

Plenty of memory bandwidth on our hosts

file:///sendfile
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Challenges and Workarounds

Mnesia table sizes

~250M objects, ~750M references per host

Limits to how much RAM we can stuff in a host

Moved from naïve/native to packed format
Packed record fields into 60-bit integers

Packed {bin1, bin2} key into <<bin1, bin2>>

encrypt(filehash) <=> id instead of hash() => id

Record storage size reduced ~45%
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Challenges and Workarounds

Each host:
================================================================================
Active Tables           Local Copy Type               Records              Bytes
--------------------------------------------------------------------------------
mmd_obj2(128)           unknown                   242,325,152     46,859,527,336
mmd_reclaim             disc_copies                 6,301,921        930,213,336
mmd_ref3(128)           unknown                   759,076,825    138,261,758,224
mmd_upload              disc_copies                 2,069,134        413,827,448
mmd_xcode2(128)         unknown                     8,477,025      2,648,887,144
schema                  disc_copies                       387            444,384
--------------------------------------------------------------------------------
Total                                           1,018,250,444    189,114,657,872
================================================================================
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Challenges and Workarounds

Slow reference checking

Ordered set keyed by Id & Ref concatenated

Naïve: length(get_refs(Id)) == 0

Fast:
case mnesia:next(Tab, Id) of

<<Id:?ID_LEN/binary, _RefId:?REF_LEN/binary>> → true
_ → false

end
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Challenges and Workarounds

mnesia:select by background procs

Returned lists of >>1M entries

Originally put in scratch ets table for iteration

Select with continuation much better
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Challenges and Workarounds

Db migrations

Converting record formats while online

Lazy migration:
Read: read(new), if missing read(old)

Write: write(new), delete(old)

Delete: delete(new), delete(old)

No transactions
Hash key to specific process on specific host

Final batch conversion, then normal behavior
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Challenges and Workarounds

Bandwidth

Users hungry to consume and share media

Single host easily fills 2x1g aggregated uplink

Dealing with soaring bandwidth bill
Cap and manage various media parameters 

(video dimensions/bitrate/framerate, audio 
sampling rate/bitrate, etc.)

Count downloads and force down-conversion
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Challenges and Workarounds

Lingering issues:

Storage redundancy

Memory leakage on db hosts (fragmentation?)

mnesia schema ops under load

Tweaking transcodings for playback issues

Managing transcode CPU

Capacity planning/management
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Challenges and Workarounds
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Challenges and Workarounds
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Results

Peak Scalability

214M images in a day

8.8K images/sec downloaded

29 Gb/sec output bandwidth
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Results

Holiday week
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Results

Erlang just fine for pushing (lots of) bytes

But not good at everything
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Results

Example: Great for transcode configs

Various transcoding tweaks require code

Ability to deploy changes quickly

Raises value of server-initiated transcodes
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Results

get_download_defaults (#mmd_client{os = android}, Type, video) →
    #mmd_parms{type=opt_default(Type, [video_mp4, video_3gp]),
               vcodec=[h264, mpeg4, h263],
               width=720, height=480,
               vbitrate=?VBITRATE_MAX,
               acodec=[aac, amrnb]};

get_download_defaults (#mmd_client{os = iphone, device = Device}, Type, video) →
    Parms = #mmd_parms{type=opt_default(Type, [video_mp4, video_quicktime]),
                       vcodec=[h264, mpeg4],
                       width=480, height=360, fps=15,
                       vbitrate=?VBITRATE_MAX,
                       acodec=aac},
    if Device =:= "iPhone_5";
       Device =:= "iPhone_4S";
       Device =:= "iPhone_4";
       Device =:= "iPhone_4_VZW" →
           Parms#mmd_parms{width=1280, height=720, fps=30};
       true →
           Parms
    end;
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Results
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Questions?

rr@ whatsapp.com
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The Problem
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Challenges and Workarounds
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