
Taking Back Embedded
The Erlang Embedded Project

Omer Kilic || @OmerK

omer@erlang-solutions.com

Slide 2 of 46

Outline

ÅCurrent state of Embedded Systems

ÅOverview of Erlang and the Actor Model

ÅModelling and developing systems using Erlang

ÅThe Erlang Embedded Project

ÅFuture Explorations

ÅQ & A

22/03/2013 Erlang Factory SF Bay 2013

Slide 3 of 46

Embedded Systems

An embedded system is a computer system designed for
specific control functions within a larger system, often
with real-time computing constraints. It is embedded as
part of a complete device often including hardware and
mechanical parts. By contrast, a general-purpose
computer, such as a personal computer (PC), is designed
to be flexible and to meet a wide range of end-user needs.

22/03/2013 Erlang Factory SF Bay 2013

Ȱ

- Infinite Wisdom of Wikipedia

Slide 4 of 46

Embedded Systems

22/03/2013 Erlang Factory SF Bay 2013

Å Specific functions
Å Designed for a particular

application

Å General purpose
Å Can be used for pretty much

any computing needs

Slide 5 of 46

Current Challenges

ÅComplex SoC platforms

ÅάLƴǘŜǊƴŜǘ ƻŦ ¢ƘƛƴƎǎέ

ïConnected and distributed systems

ÅMulticore and/or heterogeneous devices

ÅTime to market constraints

ïThe Kickstarter Era

ïRapid prototyping

ïMaker Culture

22/03/2013 Erlang Factory SF Bay 2013

Slide 6 of 46

Internet of Things

22/03/2013 Erlang Factory SF Bay 2013

Slide 7 of 46

Internet of Fridges?

22/03/2013 Erlang Factory SF Bay 2013

Slide 8 of 46

Distributed Bovine Networks?

22/03/2013 Erlang Factory SF Bay 2013

Slide 9 of 46

Exciting times

22/03/2013 Erlang Factory SF Bay 2013

Slide 10 of 46

TI OMAP Reference System

22/03/2013 Erlang Factory SF Bay 2013

Slide 11 of 46

Samsung Exynos Reference System

22/03/2013 Erlang Factory SF Bay 2013

Slide 12 of 46

#include <stats.h>

Source: http:// embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends

 22/03/2013 Erlang Factory SF Bay 2013

http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends
http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends

Slide 13 of 46

Embedded Systems

ÅBare Metal

ïNo underlying OS or high level abstractions

ÅRTOS

ïMinimal interrupt and switching latency,
scheduling guarantees, minimal jitter

ÅEmbedded Linux

ïSlimmed down Linux with hardware interfaces

22/03/2013 Erlang Factory SF Bay 2013

Slide 14 of 46

RTOS Concepts

Åbƻǘƛƻƴ ƻŦ άǘŀǎƪǎέ

ÅOS-supervised interprocess messaging

ïShared memory

ÅMutexes/Semaphores/Locks

ÅScheduling

ïPre-emptive: event driven

ïRound-robin: time multiplexed

22/03/2013 Erlang Factory SF Bay 2013

Slide 15 of 46

Embedded Linux

ÅNot a new concept, increased popularity due
to abundant supply of cheap boards
ïRaspberry Pi, Beagleboard/Beaglebone, Gumstix et al.

ÅFamiliar set of tools for software developers,
new territory for embedded engineers

ïNo direct mapping for RTOS concepts, especially
tasks

ÅComplex device driver framework

ïHere be dragons

22/03/2013 Erlang Factory SF Bay 2013

Slide 16 of 46

Erlang Embedded

ÅKnowledge Transfer Partnership between
Erlang Solutions and University of Kent

ïAim of the project: Bring the benefits of
concurrent systems development using Erlang to
the field of embedded systems; through
investigation, analysis, software development and
evaluation.

http:// erlang-embedded.com

22/03/2013 Erlang Factory SF Bay 2013

http://erlang-embedded.com/
http://erlang-embedded.com/
http://erlang-embedded.com/
http://erlang-embedded.com/

Slide 17 of 46

Erlang? (I)

{declarative, functional ,
concurrent, parallel , garbage -

collected, soft real - time,
fault - tolerant, robust,

portable, distributed

message- passing, hot code
loading}

22/03/2013 Erlang Factory SF Bay 2013

Slide 18 of 46

Erlang? (II)

ÅFirst version developed in 1986

ïOpen-sourced in 1998.

ÅBattle-tested at Ericsson and many other
companies

ïOriginally designed for Embedded Systems!

ÅImplements the Actor model

ïSupport for concurrency and distributed systems
out of the box

ÅEasy to create robust systems

22/03/2013 Erlang Factory SF Bay 2013

Slide 19 of 46

High Availability/Reliability

ÅSimple and consistent error recovery and
supervision hierarchies

ÅBuilt in fault-tolerance

ïIsolation of Actors

ÅSupport for dynamic reconfiguration

ïHot code loading

22/03/2013 Erlang Factory SF Bay 2013

Slide 20 of 46

External Interfaces

ÅFacilities to interface the Erlang runtime to the
outside world

ÅUsed for device drivers and kernel
abstractions in the embedded domain

22/03/2013 Erlang Factory SF Bay 2013

Slide 21 of 46

External Interfaces

22/03/2013 Erlang Factory SF Bay 2013

Slide 22 of 46

Actor Model

ÅProposed in 1973 by Hewitt, Bishop and Steiger

ïά¦ƴƛǾŜǊǎŀƭ ǇǊƛƳƛǘƛǾŜǎ ŦƻǊ ŎƻƴŎǳǊǊŜƴǘ ŎƻƳǇǳǘŀǘƛƻƴέ

ÅNo shared-state, self-contained and atomic

ÅBuilding blocks for modular, distributed and
concurrent systems

ÅImplemented in a variety of programming
languages

22/03/2013 Erlang Factory SF Bay 2013

Slide 23 of 46

Actor Model

ÅAsynchronous message passing

ïMessages kept in a mailbox and processed in the
order they are received in

ÅUpon receiving messages, actors can:

ïMake local decisions and change internal state

ïSpawn new actors

ïSend messages to other actors

22/03/2013 Erlang Factory SF Bay 2013

Slide 24 of 46

Process Error Handling

ÅLet it Fail!

ïAbstract error handling away from the modules

ïResults in leaner modules

ÅSupervision hierarchies

22/03/2013 Erlang Factory SF Bay 2013

Slide 25 of 46

Propagating Exit Signals

22/03/2013 Erlang Factory SF Bay 2013

PidA PidB

PidC

{'EXIT', PidA, Reason}

{'E
X

IT
',

P
id

B
,

R
e

a
s
o

n
}

Slide 26 of 46

Trapping Exits

22/03/2013 Erlang Factory SF Bay 2013

PidA PidB

PidC

{'EXIT', PidA, Reason}
process_flag (trap_exit , true)

Slide 27 of 46

TI OMAP Reference System

22/03/2013 Erlang Factory SF Bay 2013

Slide 28 of 46

Fine Grain Abstraction

ÅAdvantages

ïApplication code becomes simpler

ïConcise and shorter modules

ïTesting becomes easier

ïCode re-use (potentially) increases

ÅDisadvantage

ïArchitecting fine grain systems is difficult

22/03/2013 Erlang Factory SF Bay 2013

Slide 29 of 46

Limitations of the Actor Model

ÅNo notion of inheritance or general hierarchy

ïSpecific to language and library implementation

ÅAsynchronous message passing can be
problematic for certain applications

ïOrdering of messages received from multiple
processes

ïAbstract definition may lead to inconsistency in
larger systems

ÅFine/Coarse Grain argument

22/03/2013 Erlang Factory SF Bay 2013

Slide 30 of 46

Erlang, the Maestro

(flickr/dereckesanches)

22/03/2013 Erlang Factory SF Bay 2013

Slide 31 of 46

Accessing hardware

ÅPeripherals are memory mapped

ÅAccess via /dev/mem

ïFaster, needs root, potentially dangerous!

ÅUse kernel modules/sysfs

ï{ƭƻǿŜǊΣ ŘƻŜǎƴΩǘ ƴŜŜŘ ǊƻƻǘΣ ŜŀǎƛŜǊΣ ǊŜƭŀǘƛǾŜƭȅ ǎŀŦŜǊ

22/03/2013 Erlang Factory SF Bay 2013

Slide 32 of 46

GPIO Interface (I)

init (Pin , Direction) - >

 {ok, FdExport } = file :open("/sys/class/gpio/export" , [write]),
 file :write(FdExport , integer_to_list (Pin)),
 file :close(FdExport),

 {ok, FdPinDir } = file :open("/sys/class/gpio/gpio" ++ integer_to_list (Pin)
++ "/direction" , [write]),
 case Direction of
 in - > file :write(FdPinDir , "in");
 out - > file :write(FdPinDir , "out")
 end,
 file :close(FdPinDir),

 {ok, FdPinVal } = file :open("/sys/class/gpio/gpio" ++ integer_to_list (Pin)
++ "/value" , [read, write]),

 FdPinVal .

22/03/2013 Erlang Factory SF Bay 2013

Slide 33 of 46

GPIO Interface (II)

write (Fd, Val) - >
 file :position(Fd, 0),
 file :write(Fd, integer_to_list (Val)).

read (Fd) - >
 file :position(Fd, 0),
 {ok, Val } = file :read(Fd, 1),
 Val .

release (Pin) - >
 {ok, FdUnexport } = file :open("/sys/class/gpio/unexport" ,
[write]),
 file :write(FdUnexport , integer_to_list (Pin)),
 file :close(FdUnexport).

22/03/2013 Erlang Factory SF Bay 2013

Slide 34 of 46

Example: GPIO

22/03/2013 Erlang Factory SF Bay 2013

PidA

Pin17

PidB

PidC

???

Slide 35 of 46

Example: GPIO

22/03/2013 Erlang Factory SF Bay 2013

PidA

Pin17

PidB

PidC

GPIO
Proxy

Slide 36 of 46

GPIO Proxy

ÅwŜǇƭŀŎŜǎ ΨƭƻŎƪǎΩ ƛƴ ǘǊŀŘƛǘƛƻƴŀƭ ǎŜƴǎŜ ƻŦ
embedded design

ïAccess control/mutual exclusion

ÅCan be used to implement safety constraints

ïToggling rate, sequence detection, direction
control, etc.

22/03/2013 Erlang Factory SF Bay 2013

Slide 37 of 46

Concurrency Demo

22/03/2013 Erlang Factory SF Bay 2013

http:// vimeo.com/40769788

http://vimeo.com/40769788
http://vimeo.com/40769788

