

Taking Back Embedded The Erlang Embedded Project

Omer Kilic || @OmerK omer@erlang-solutions.com

Outline

- Current state of Embedded Systems
- Overview of Erlang and the Actor Model
- Modelling and developing systems using Erlang
- The Erlang Embedded Project
- Future Explorations
- Q & A

An embedded system is a computer system designed for specific control functions within a larger system, often with real-time computing constraints. It is embedded as part of a complete device often including hardware and mechanical parts. By contrast, a general-purpose computer, such as a personal computer (PC), is designed to be flexible and to meet a wide range of end-user needs.

- Infinite Wisdom of Wikipedia

Embedded Systems

- Specific functions
- Designed for a particular application

- General purpose
- Can be used for pretty much any computing needs

Current Challenges

- Complex SoC platforms
- "Internet of Things"
 - Connected and distributed systems
- Multicore and/or heterogeneous devices
- Time to market constraints
 - The Kickstarter Era
 - Rapid prototyping
 - Maker Culture

Internet of Things

Internet of Fridges?

22/03/2013

Erlang Factory SF Bay 2013

Slide 7 of 46

Distributed Bovine Networks?

Exciting times

TI OMAP Reference System

Samsung Exynos Reference System

#include <stats.h>

The four languages most often reported as the primary language for embedded projects for the years 2005 to 2012, along with linear trendlines.

Source: http://embedded.com/electronics-blogs/programming-pointers/4372180/Unexpected-trends

22/03/2013

Embedded Systems

- Bare Metal
 - No underlying OS or high level abstractions
- RTOS
 - Minimal interrupt and switching latency, scheduling guarantees, minimal jitter
- Embedded Linux
- - Slimmed down Linux with hardware interfaces

RTOS Concepts

- Notion of "tasks"
- OS-supervised interprocess messaging
 - Shared memory
- Mutexes/Semaphores/Locks
- Scheduling
 - Pre-emptive: event driven
 - Round-robin: time multiplexed

Embedded Linux

- Not a new concept, increased popularity due to abundant supply of cheap boards
 - Raspberry Pi, Beagleboard/Beaglebone, Gumstix et al.
- Familiar set of tools for software developers, new territory for embedded engineers
 - No direct mapping for RTOS concepts, especially tasks
- Complex device driver framework

Here be dragons

Erlang Embedded

- Knowledge Transfer Partnership between Erlang Solutions and University of Kent
 - Aim of the project: Bring the benefits of concurrent systems development using Erlang to the field of embedded systems; through investigation, analysis, software development and evaluation.

http://erlang-embedded.com

22/03/2013

{declarative, functional, concurrent, parallel, garbagecollected, soft real-time, fault-tolerant, robust, portable, distributed message-passing, hot code loading}

Erlang? (II)

- First version developed in 1986
 - Open-sourced in 1998.
- Battle-tested at Ericsson and many other companies
 - Originally designed for Embedded Systems!
- Implements the Actor model
 - Support for concurrency and distributed systems out of the box
- Easy to create robust systems

High Availability/Reliability

- Simple and consistent error recovery and supervision hierarchies
- Built in fault-tolerance
 - Isolation of Actors
- Support for dynamic reconfiguration
 - Hot code loading

External Interfaces

- Facilities to interface the Erlang runtime to the outside world
- Used for device drivers and kernel abstractions in the embedded domain

External Interfaces

22/03/2013

Actor Model

- Proposed in 1973 by Hewitt, Bishop and Steiger
 - "Universal primitives for concurrent computation"
- No shared-state, self-contained and atomic
- Building blocks for modular, distributed and concurrent systems
- Implemented in a variety of programming languages

Actor Model

- Asynchronous message passing
 - Messages kept in a mailbox and processed in the order they are received in
- Upon receiving messages, actors can:
 - Make local decisions and change internal state
 - Spawn new actors
 - Send messages to other actors

Process Error Handling

- Let it Fail!
 - Abstract error handling away from the modules
 - Results in leaner modules
- Supervision hierarchies

Propagating Exit Signals

22/03/2013

Erlang Factory SF Bay 2013

Slide 25 of 46

Trapping Exits

TI OMAP Reference System

Erlang Factory SF Bay 2013

Slide 27 of 46

Fine Grain Abstraction

- Advantages
 - Application code becomes simpler
 - Concise and shorter modules
 - Testing becomes easier
 - Code re-use (potentially) increases
- Disadvantage
 - Architecting fine grain systems is difficult

Limitations of the Actor Model

- No notion of inheritance or general hierarchy
 - Specific to language and library implementation
- Asynchronous message passing can be problematic for certain applications
 - Ordering of messages received from multiple processes
 - Abstract definition may lead to inconsistency in larger systems
 - Fine/Coarse Grain argument

Erlang, the Maestro

(flickr/dereckesanches)

22/03/2013

Erlang Factory SF Bay 2013

Slide 30 of 46

Accessing hardware

Peripherals are memory mapped

- Access via /dev/mem
 - Faster, needs root, potentially dangerous!
- Use kernel modules/sysfs

- Slower, doesn't need root, easier, relatively safer

GPIO Interface (I)

```
init(Pin, Direction) ->
```

```
{ok, FdExport} = file:open("/sys/class/gpio/export", [write]),
file:write(FdExport, integer_to_list(Pin)),
file:close(FdExport),
```

```
{ok, FdPinDir} = file:open("/sys/class/gpio/gpio" ++ integer_to_list(Pin)
++ "/direction", [write]),
    case Direction of
        in -> file:write(FdPinDir, "in");
        out -> file:write(FdPinDir, "out")
    end,
    file:close(FdPinDir),
```

```
{ok, FdPinVal} = file:open("/sys/class/gpio/gpio" ++ integer_to_list(Pin)
++ "/value", [read, write]),
```

FdPinVal.

GPIO Interface (II)

```
write(Fd, Val) ->
file:position(Fd, 0),
file:write(Fd, integer_to_list(Val)).
read(Fd) ->
file:position(Fd, 0),
{ok, Val} = file:read(Fd, 1),
Val.
```

```
release(Pin) ->
    {ok, FdUnexport} = file:open("/sys/class/gpio/unexport",
    [write]),
    file:write(FdUnexport, integer_to_list(Pin)),
    file:close(FdUnexport).
```


Example: GPIO

22/03/2013

Example: GPIO

22/03/2013

Erlang Factory SF Bay 2013

Slide 35 of 46

GPIO Proxy

 Replaces 'locks' in traditional sense of embedded design

Access control/mutual exclusion

- Can be used to implement safety constraints
 - Toggling rate, sequence detection, direction control, etc.

Concurrency Demo

module(led). root@raspberrypi:~/erl-hw/raspberry-pi# erl Erlang R15B01 (erts-5.9.1) [source] [async-threads:0] export([start/1, stop/1, loop/2]). 0 1-poll:false] LIKE 4 start(Pin) -Fd = gpio:init(Pin, out), Eshell V5.9.1 (abort with ^G) Pid = spawn(?MODULE, loop, [Fd, Pin]), 1> c(gpio). Pid. {ok,gpio} SHARE 2> c(led). 9 stop(Pid) -> 10 Pid t stop. {ok,led} 3> L0 = led:start(18). 11 (0.47.0) 12 loop(Fd, Pin) -> 4> L1 = led:start(21). 13 (0.52.0) receive 14 5> L2 = led:start(22). 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 file:write(Fd, "1") <8.57.0> loop(Fd, Pin); 6> L0 ! on. on 7> L2 ! om. file:write(Fd, loop(Ferrin); blink, Delay Off 8> file:write Pd; * 1: syntax error before: '.' timer:sleep(Delay) 8> L2 1 on. file:write(Fd, 0), timer:sleep(J lay), self() blink, Delay 9> L1 ! {blink, 500}. {blink,500} loop(Fd, Pin); 10> L0 ! off. off file:close(Id), 11> L0 ! on. gpio:release(Cin). on 12> 31 end 05:53

Erlang Embedded - Episode 2 - Concurrency in Erlang with Raspberry Pi

http://vimeo.com/40769788

22/03/2013

Universal Peripheral/Component Modules

22/03/2013

Erlang Factory SF Bay 2013

Slide 38 of 46

Universal Peripheral/Component Modules

Temperature Sensor with I2C Interface

Slide 39 of 46

Hardware Projects – Ponte

22/03/2013

Erlang Factory SF Bay 2013

Slide 40 of 46

Hardware Projects – Demo Board

Hardware Simulator

Erlang Factory SF Bay 2013

Future Explorations

Parallella:

Packages for Embedded Architectures

🕽 🔒 https://www.er	lang-solutions.com	n/downloads	/download-erlang-	-otp			<u>ک</u>	\$
Erland	J.		@ErlangSold US based and i thing :) ^early b Follow us on	utions on Twitter nterested in #Erlang? The ird closes 8 Dec [^] http://t. Twitter	Evening School of Erl co/xYHfDT8z	ang might be your	Newsletter sign- Sign-up View Example	·up
Products	Services	Industries	Conferences	Resources	Downloads	About	Contact	-
Home » Downloads » Dov	wnload Erlang OTP	1				Search:		9
Home » Downloads » Dow	wnload Erlang OTP	and Eda				Search:		9
Home » Downloads » Dov Downloads Download Erlang OTP	wnioad Erlang OTP Downlo	oad Erla	ng OTP			Search:		0
Home » Downloads » Dov Downloads Download Erlang OTP Documentation Packages FAQ Troubles booting	wnload Erlang OTP Downlo Erlang Solution following is a li operating syste	Dad Erla ns has built and ist of ready-to-g ems:	ng OTP d tested Erlang/OTP ext o packages of the lates	tensively using the full st release download (F	OTP test suite. The R15B02), for various	Search:		0
Home » Downloads » Downloads Download Erlang OTP Documentation Packages FAQ Troubleshooting Download MongooselM	Version R15	Dad Erla ns has built and ist of ready-to-g ems: 5802 Opt	ng OTP d tested Erlang/OTP ext o packages of the lates erating System Rasp	tensively using the full st release download (F bian 💌	OTP test suite. The R15B02), for various	Search:		3

https://www.erlang-solutions.com/downloads/download-erlang-otp

Erlang Embedded Training Stack

- A complete package for people interested in developing the next generation of concurrent and distributed Embedded Systems
- Training Modules:
 - Embedded Linux Primer
 - Erlang/OTP 101
 - Erlang Embedded Framework

Get in touch if you're interested.

Thank you

- http://erlang-embedded.com
- embedded@erlang-solutions.com
- @ErlangEmbedded
 - The world is concurrent.
 Things in the world don't share data.
 Things communicate with messages.
 Things fail.
 - Joe Armstrong

Father of Erlang

