
Cliff Moon
Bottleneck Whack-A-Mole

Thursday, March 21, 13



Whack-A-Mole
Thursday, March 21, 13



Production Experience
Your Mileage May Vary.
This is all folklore.
Unless otherwise specified - R14B04.
Down in the weeds.

Thursday, March 21, 13



Collectors

• Terminates SSL and authenticates clients.

• Transforms IPFIX into internal formats.

• Exposes pubsub interfaces internally per customer.

• Talks to Scala nodes via Scalang (Erlang distribution protocol).

Thursday, March 21, 13



Collectors

• 2.5 years in production.

• Early versions fell over around ~700 connections, ~10k recs/sec.

• Currently handles 3000 connections, ~300k recs/sec per machine.

• ~ 100mbps ingress per machine from customers.

• ~ 300mbps egress per machine to internal network.

Thursday, March 21, 13



Erlang -
There is always a queue somewhere getting backed up.

Thursday, March 21, 13



Tools of the Trade

Thursday, March 21, 13



Remsh is Magical

• i().

• etop.

• process_info(pid(0,128,0)).

• process_info(Pid, [backtrace]).

• Make your own escape hatches.

• Admin functions and ops playbook for bad actors.

Thursday, March 21, 13



Escape Hatches
Thursday, March 21, 13



Dump Memory Usage
Thursday, March 21, 13



Taxonomy of Failure
Under extreme load, what will a single process do?

Thursday, March 21, 13



Overloaded Process
For some reason an overloaded process cannot keep up with incoming 
message rates.

Thursday, March 21, 13



Erlang Memory Model

• Heap per process.

• Message queue is stored on the heap.

• Garbage collection puts the process to sleep.

Thursday, March 21, 13



Process Death Spiral

1. A process can do N messages / sec.

2. If the arrival rate is > N messages / sec, messages will queue.

3. Larger queues cause garbing.

4. N = N * M where M < 1.

5. Goto 1.

Thursday, March 21, 13



Garbing
“This is bad luck, the process was garbage collecting when the crash dump 
was written, the rest of the information for this process is limited.”

Thursday, March 21, 13



Until...
eheap_alloc: Cannot allocate 8700015800 bytes of memory 
(of type "heap").

Thursday, March 21, 13



Why can we not keep up?

• Receive statements.

• Doing too much work.

• Sender is too fast.

Thursday, March 21, 13



Strategies for Mitigation

Thursday, March 21, 13



Receive in gen_server
A quiz.

Thursday, March 21, 13



Which of these can cause a 
receive?

1. gen:call

2. gen_tcp:recv

3. Pid ! Msg

Thursday, March 21, 13



All of the above!

Thursday, March 21, 13



What’s this?
Thursday, March 21, 13



The `!` Operator!
Reducible to a gen_server:call and erlang:send.

Thursday, March 21, 13



Mitigating Errant Receives

• Separate control plane from data plane.

• Know what you are calling.

• Cut down gen_servers to as little code as possible.

Thursday, March 21, 13



Separating Control from Data

• Control needs to be low latency.

• Data needs to be high throughput.

• Separate concerns into two processes.

• Share state via ETS tables.

Thursday, March 21, 13



Doing too much. 
10 pounds of sh*t in a 5 pound bag.

Thursday, March 21, 13



Do less stuff!
The preferred solution, often not feasible.

Thursday, March 21, 13



Mitigating Overload

Thursday, March 21, 13



Just Spawn a Process

• handle_call(Work, From, State) -> spawn(fun() -> 
gen_server:reply(do_stuff(Work), From) end),...

• Cheap GC on spawned processes.

• Can spread load across CPU’s.

• Context switching overhead.

Thursday, March 21, 13



Worker Pools

• Probably a bad idea.

• Spawning is cheap, managing a worker pool is expensive.

• Only for expensive resources like sockets, ports, etc.

Thursday, March 21, 13



Process Options

• In spawn_opt you can set min_heap_size, fullsweep_after, and 
priority.

• Mostly these will be fool’s errands.

• Test and measure to understand the effects.

Thursday, March 21, 13



Write A NIF

• Can do work faster, can use syscalls optimized for certain workloads.

• Can also lock up the VM, segfault, abort, so forth.

• Starts a path towards C++ glued together with Erlang.

• Welp.

Thursday, March 21, 13



Fast Sender
Shut up and let me think already.

Thursday, March 21, 13



Flow Control!
Preferably explicit.

Thursday, March 21, 13



Reading from a Socket

• Use {active, once}.

• Don’t use gen_tcp:recv.

• The framing socket options make this really easy.

• Buffer in the kernel TCP stack instead of your mailbox.

Thursday, March 21, 13



Process to Process

• Poor man’s TCP.

• Receiver Acks every N messages.

• Sender will send N messages and wait for an ack.

• Pick a reasonable N, say 5.

Thursday, March 21, 13



Built in Flow Control

• erlang:send can sometimes suspend a process.

• When sending to a remote pid erlang:send_nosuspend might be 
useful.

• What’s better, lose data or wait to send?

Thursday, March 21, 13



The Blowoff Valve
Thursday, March 21, 13



Memsup

• Can specify an event to fire when a process reaches a percentage of 
main memory.

• Execute arbitrary code in response.

• This can be used to stop the VM killing death spiral.

Thursday, March 21, 13



Mysteriously Unresponsive

• App is not responding.

• Low resource utilization.

• What the hell is happening?

Thursday, March 21, 13



Deadlocked

• Within a given time a gen_server can process N calls.

• Your code sends it M calls where M > N.

• M-N calls will fail.

• Not dealt with, these failures will propagate.

Thursday, March 21, 13



Timeouts

• Default timeout for gen:call is 5000ms.

• Timeout of infinity can exacerbate deadlocking.

• Handle call failures.

• Log errors.

• Retry if appropriate.

• Does it need to be a call?

Thursday, March 21, 13



Deferred Reply
Thursday, March 21, 13



Does it need to be a process?
Wrapping state in a process implies a mutex for accessing said state.

Thursday, March 21, 13



Refactor Processes into ETS

• Remove the gen_server and mutate an ETS table via the module API.

• Tune ETS for read concurrency or write concurrency.

• You can pass around a table reference instead of a Pid.

Thursday, March 21, 13



On to the Network
Beaten to death by runt packets.

Thursday, March 21, 13



Erlang Distribution Protocol

• Tuned for low-latency - TCP_NODELAY.

• Generally 1 message = 1 packet.

• At high throughput your network will die.

Thursday, March 21, 13



Mitigation

• Buffer in the gen_server.

• This is a case of doing more work.

• Can use an intermediary process.

• Just open a socket.

Thursday, March 21, 13



In Summary

Thursday, March 21, 13



Grind The Loop

• Observe that there is a problem.

• Find the overloaded queue(s).

• Mitigate the bottleneck.

• Repeat.

Thursday, March 21, 13



Questions?
Thanks.

Thursday, March 21, 13


