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Production Experience
Your Mileage May Vary.
This is all folklore.
Unless otherwise specified - R14B04.
Down in the weeds.
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Collectors

• Terminates SSL and authenticates clients.

• Transforms IPFIX into internal formats.

• Exposes pubsub interfaces internally per customer.

• Talks to Scala nodes via Scalang (Erlang distribution protocol).

Thursday, March 21, 13



Collectors

• 2.5 years in production.

• Early versions fell over around ~700 connections, ~10k recs/sec.

• Currently handles 3000 connections, ~300k recs/sec per machine.

• ~ 100mbps ingress per machine from customers.

• ~ 300mbps egress per machine to internal network.
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Erlang -
There is always a queue somewhere getting backed up.
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Tools of the Trade
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Remsh is Magical

• i().

• etop.

• process_info(pid(0,128,0)).

• process_info(Pid, [backtrace]).

• Make your own escape hatches.

• Admin functions and ops playbook for bad actors.
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Escape Hatches
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Dump Memory Usage
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Taxonomy of Failure
Under extreme load, what will a single process do?
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Overloaded Process
For some reason an overloaded process cannot keep up with incoming 
message rates.
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Erlang Memory Model

• Heap per process.

• Message queue is stored on the heap.

• Garbage collection puts the process to sleep.
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Process Death Spiral

1. A process can do N messages / sec.

2. If the arrival rate is > N messages / sec, messages will queue.

3. Larger queues cause garbing.

4. N = N * M where M < 1.

5. Goto 1.
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Garbing
“This is bad luck, the process was garbage collecting when the crash dump 
was written, the rest of the information for this process is limited.”
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Until...
eheap_alloc: Cannot allocate 8700015800 bytes of memory 
(of type "heap").
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Why can we not keep up?

• Receive statements.

• Doing too much work.

• Sender is too fast.

Thursday, March 21, 13



Strategies for Mitigation
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Receive in gen_server
A quiz.

Thursday, March 21, 13



Which of these can cause a 
receive?

1. gen:call

2. gen_tcp:recv

3. Pid ! Msg
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All of the above!
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What’s this?
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The `!` Operator!
Reducible to a gen_server:call and erlang:send.
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Mitigating Errant Receives

• Separate control plane from data plane.

• Know what you are calling.

• Cut down gen_servers to as little code as possible.
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Separating Control from Data

• Control needs to be low latency.

• Data needs to be high throughput.

• Separate concerns into two processes.

• Share state via ETS tables.
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Doing too much. 
10 pounds of sh*t in a 5 pound bag.
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Do less stuff!
The preferred solution, often not feasible.
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Mitigating Overload
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Just Spawn a Process

• handle_call(Work, From, State) -> spawn(fun() -> 
gen_server:reply(do_stuff(Work), From) end),...

• Cheap GC on spawned processes.

• Can spread load across CPU’s.

• Context switching overhead.
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Worker Pools

• Probably a bad idea.

• Spawning is cheap, managing a worker pool is expensive.

• Only for expensive resources like sockets, ports, etc.
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Process Options

• In spawn_opt you can set min_heap_size, fullsweep_after, and 
priority.

• Mostly these will be fool’s errands.

• Test and measure to understand the effects.
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Write A NIF

• Can do work faster, can use syscalls optimized for certain workloads.

• Can also lock up the VM, segfault, abort, so forth.

• Starts a path towards C++ glued together with Erlang.

• Welp.
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Fast Sender
Shut up and let me think already.
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Flow Control!
Preferably explicit.
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Reading from a Socket

• Use {active, once}.

• Don’t use gen_tcp:recv.

• The framing socket options make this really easy.

• Buffer in the kernel TCP stack instead of your mailbox.
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Process to Process

• Poor man’s TCP.

• Receiver Acks every N messages.

• Sender will send N messages and wait for an ack.

• Pick a reasonable N, say 5.
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Built in Flow Control

• erlang:send can sometimes suspend a process.

• When sending to a remote pid erlang:send_nosuspend might be 
useful.

• What’s better, lose data or wait to send?
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The Blowoff Valve
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Memsup

• Can specify an event to fire when a process reaches a percentage of 
main memory.

• Execute arbitrary code in response.

• This can be used to stop the VM killing death spiral.
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Mysteriously Unresponsive

• App is not responding.

• Low resource utilization.

• What the hell is happening?
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Deadlocked

• Within a given time a gen_server can process N calls.

• Your code sends it M calls where M > N.

• M-N calls will fail.

• Not dealt with, these failures will propagate.
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Timeouts

• Default timeout for gen:call is 5000ms.

• Timeout of infinity can exacerbate deadlocking.

• Handle call failures.

• Log errors.

• Retry if appropriate.

• Does it need to be a call?
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Deferred Reply
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Does it need to be a process?
Wrapping state in a process implies a mutex for accessing said state.
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Refactor Processes into ETS

• Remove the gen_server and mutate an ETS table via the module API.

• Tune ETS for read concurrency or write concurrency.

• You can pass around a table reference instead of a Pid.

Thursday, March 21, 13



On to the Network
Beaten to death by runt packets.
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Erlang Distribution Protocol

• Tuned for low-latency - TCP_NODELAY.

• Generally 1 message = 1 packet.

• At high throughput your network will die.
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Mitigation

• Buffer in the gen_server.

• This is a case of doing more work.

• Can use an intermediary process.

• Just open a socket.
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In Summary
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Grind The Loop

• Observe that there is a problem.

• Find the overloaded queue(s).

• Mitigate the bottleneck.

• Repeat.
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Questions?
Thanks.
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