
Erlang Solutions Ltd.

© 1999-2013 Erlang Solutions Ltd.

Hitchhiker’s Tour of the
BEAM

Robert Virding
Principle Language Expert
Erlang Solutions Ltd.

© 1999-2013 Erlang Solutions Ltd.

What IS the BEAM?

• A virtual machine to run Erlang
• Interfaces to the “outside” world
- Ports and NIFs

• A bunch of built-in “useful” functions
- BIFs

2

© 1999-2013 Erlang Solutions Ltd.

Properties of the Erlang system

• Lightweight, massive concurrency
• Asynchronous comunication
• Process isolation
• Error handling
• Continuous evolution of the system
• Soft real-time

3

© 1999-2013 Erlang Solutions Ltd.

Properties of the Erlang language

• Immutable data
• Pattern matching
• Functional language

4

© 1999-2013 Erlang Solutions Ltd.

So to run Erlang the BEAM needs to
support all this.

AT LEAST

5

© 1999-2013 Erlang Solutions Ltd.

We will look at

• Schedulers
• Processes
• Memory management
• Message passing
• Multi-core
• ...

6

© 1999-2013 Erlang Solutions Ltd.

Schedulers

• Semi-autonomous BEAM VM
• One per VM thread
- By default one VM thread per core

• Run as separately as possible
- Reduce nasties like locks/synchronisation

• Contains its own run-queue
- Run-queue contains things to be done

• Settable with erl “+S” emulator flags

7

© 1999-2013 Erlang Solutions Ltd.

Schedulers: balancing

• Once every period (40k reductions) a new master
scheduler is chosen
- Basically first to reach that count

• Master balances/optimises workloads on
schedulers

• Suspends unneeded schedulers
• Schedules changes on other schedulers run-

queues
• Behaviour settable with erl “+s” emulator flags

8

© 1999-2013 Erlang Solutions Ltd.

Schedulers: scheduling processes

• A process can be state
- running
- runnable
- waiting (for a message)
- exiting
- garbage_collecting
- suspended

9

© 1999-2013 Erlang Solutions Ltd.

Schedulers: scheduling processes

• Each scheduler has its own run-queue
• Waiting for messages is a non-busy wait
• Waiting processes become runnable when a

message arrives
- Put on the run-queue

• Running processes do not block a scheduler
- Suspended waiting for a message
- Re-scheduled after 2000 reductions

10

© 1999-2013 Erlang Solutions Ltd.

Memory

Many separate memory areas/types
• Process heaps
• ETS tables
• Atom table
• Large binary space
• Code space
• Timers
• ...

11

© 1999-2013 Erlang Solutions Ltd.

Memory: Atom table

• All atoms are interned in a global atom table
- FAST equality comparison
- NEVER need to use integers as tags for speed

• Atoms are NEVER deleted
- Create with caution
- Avoid programs which rampantly creates atoms in

an uncontrolled fashion

• Fixed size table
- System crashes when full

12

© 1999-2013 Erlang Solutions Ltd.

Memory: large binary space

• Large binaries (> 64 bytes) stored in separate
area

• Fast message passing as only pointer sent
- Can save a lot of memory as well

• Can be long delay before being reclaimed by GC
- All processes which have “seen” the binary must first

do a GC
- Can grow and crash system

13

© 1999-2013 Erlang Solutions Ltd.

Memory: ETS tables

• Separate from process heaps
• Not implicitly garbage collected
• But memory reclaimed when table/element

deleted
• All access by elements being copied to/from

process heaps
- match/select allows more complex selection

without copying

• Can store LARGE amounts of data

14

© 1999-2013 Erlang Solutions Ltd.

Memory: Process heaps

• Each process has a separate heap
• All process data local to process
• Can set minimum process heap size
- Per process and for whole system

• Sending messages means copying data

• This NOT required by Erlang which just specifies
process isolation

15

© 1999-2013 Erlang Solutions Ltd.

Isn’t all this data copying terribly
inefficient?

16

Well, yes. Sort of. Maybe.

BUT ...

© 1999-2013 Erlang Solutions Ltd.

Process heaps: Garbage collection

Having separate process heaps has some important
benefits
• Allows us to collect each process separately
- Processes small so GC pauses not noticeable

• Garbage collection becomes more efficient
• Garbage collector becomes simpler
• Needs no synchronisation
- This is a BIG WIN™
- And it gets bigger the more cores you have!

17

© 1999-2013 Erlang Solutions Ltd.

Process heaps: Garbage collection

• Copying collector
• Generational collector
- 2 spaces, new and old
- New data is kept in new space for a number of

collections before being passed to the old heap
- Not much data unnecessarily ends up in old heap
- Eventually old heap must be collected as well

18

© 1999-2013 Erlang Solutions Ltd.

Process heaps: Tuning

• Minimum process heap size (min_heap_size)
- Process starts bigger, never gets smaller
- Be selective or pay the price in memory

• Full sweep in garbage collector
(fullsweep_after)
- Black magic, just test and see
- Forces collections more often, reclaim memory

faster
- Uses less memory, reclaims large binaries faster
- Less efficient collection

19

© 1999-2013 Erlang Solutions Ltd.

Async thread pool

• File i/o can be problematic
- It takes time
- It blocks the scheduler while waiting

• Async threads moves i/o operations out of the
scheduler thread
- Scheduler thread now no longer waits for file i/o

• From R16 there are 10 threads by default
• Settable with the erl “+A” emulator flags

20

© 1999-2013 Erlang Solutions Ltd.

Async thread pool

• File i/o will automatically use them if created
• Inet driver never uses them
- Not really necessary as it is possible to do cross-

platform non-blocking i/o.

• Linked-in port drivers can use them if they exist

21

© 1999-2013 Erlang Solutions Ltd.

How to crash the BEAM

• Fill the atom table
• Overflow binary space
• Uncontrolled process heap growth
- Infinite recursion
- VERY long message queues
- A lot of data

• Errors in NIFs and linked-in port drivers!
- These can really get you

22

© 1999-2013 Erlang Solutions Ltd.

Thank you!

robert.virding@erlang-solutions.com
@rvirding

23

mailto:robert.virding@erlang-solutions.com
mailto:robert.virding@erlang-solutions.com

© 1999-2013 Erlang Solutions Ltd.

Lock example

24

© 1999-2013 Erlang Solutions Ltd.

Lock example

25

© 1999-2013 Erlang Solutions Ltd.

Lock example

26

• Spawns processes which creates timestamps
checks if there in order and sends the result to its
parent

• Uses erlang:now/0
- Guaranteed continuously increasing values
- Which needs synchronisation

