
locker: distributed locking
Knut Nesheim

@knutin



The need

Real-time multiplayer game at Wooga

Stateful

One process per user

One process per world



The need

Only one process per user & world

Cannot reconcile game worlds

Strong consistency

Fine-grained distributed coordination

Lookup table when sending game updates



Lock

World #123 World #123

Client Client

lock lock

visit world #123 visit world #123

ok already_locked



World #123

Client Client



Next generation

Lock implemented once already

Central serialization with atomic ops (Redis)

SPoF

Next gen want higher availability, because..



Living with failure

Hardware sometimes fails

The network is mostly ok

Software is almost bug-free

Downtime is often short



Living with a SPoF sucks..



Development easy

Operations suck

Change become scary

Operator error becomes costly

Must fix problems immediately



Requirements

~10k conditional writes per second

~3M eventually consistent reads per second

~150k reads on local replica

Lock expires if not kept alive

Dynamic cluster membership



ZooKeeper looks like 
the best option



“What would the dream 
solution look like?”



AppApp App App App App App

AppApp App App App App App

LB LB

S3 DB



AppApp App App App App App

AppApp App App App App App



AppApp App App App

App App

AppApp App App App App App



AppApp App App App

App App

AppApp App App App App App

N=5, W=3



AppApp App App App

App App

AppApp App App App App App

N=5, W=3



AppApp App App App

App App

AppApp App App App App App

N=5, W=3



AppApp App App App

App App

AppApp App App App App App

N=5, W=3



AppApp App App App
App

App

AppApp App App App App App

N=5, W=3



Run inside our app servers

Easy to debug, instrument, monitor, deploy

Simple operations



“How hard can it be?”



Distributed systems are hard

Many books, papers on distributed systems

Riak a good example of mindset

Idea: pick the algorithms that fits best



Simplest thing that 
could possibly work



“good enough”
Problem Solution

Consistency,
conditional writes

Serialization,
“2 Phase Commit”

Availability Multiple serializers,
quorum (CP)

Local replica Replay transaction log

Dynamic cluster Manual configuration

Anti-entropy Lock keep alive



Implementation

Proof of concept in Friday afternoon

Looked promising, spent ~3 weeks

Turned into production quality

Test race conditions

PropEr

330 lines (!)



locker
http://github.com/wooga/locker

http://github.com/wooga/locker
http://github.com/wooga/locker


Beware tradeoffs!

Keep consistency, sacrifice availability during failure

No persistency, assumes enough masters stays up

No group membership, views

Manually configure masters, replicas, quorum value

Assumes perfect network during reconfiguration

Not based on a described algorithm



Usage

start_link(W)

set_nodes(AllNodes,	 Masters,	 Replicas)

lock(Key,	 Value,	 LeaseLength)

extend_lease(Key,	 Value,	 LeaseLength)

release(Key,	 Value)

dirty_read(Key)



lock(Key,	 Value,	 LeaseLength)

Two phases:

Prepare: Ask masters for votes

Commit: If majority, write on masters

Timeout counted as negative vote, CP

Asynchronous replication, wait_for/2



Master #1

Client A

Master #3

Client B

locker:lock(foo, pid(0,123,0))

Master #2



Client A Client B

Write locks:[]

locker:lock(foo, pid(0,123,0))

Send: {get_write_lock, foo, not_found}

[] []

Master #1 Master #2 Master #3



Client A Client B

[{lock, foo}] [][{lock, foo}]

Send: {get_write_lock, foo, not_found}

locker:lock(foo, pid(0,123,0))

Master #1 Master #2 Master #3



Client A Client B

[{lock, foo}] [][{lock, foo}]

Send: {get_write_lock, foo, not_found}

locker:lock(foo, pid(0,123,0))

Master #1 Master #2 Master #3



Client A Client B

[{lock, foo}] [{lock, foo}][{lock, foo}]

Send: {get_write_lock, foo, not_found}

locker:lock(foo, pid(0,123,0))

Master #1 Master #2 Master #3



Client A Client B

[{lock, foo}] [{lock, foo}][{lock, foo}]

Already
locked!

Send: {get_write_lock, foo, not_found}

Master #1 Master #2 Master #3

locker:lock(foo, pid(0,123,0))



Client A Client B

[{lock, foo}] [{lock, foo}][{lock, foo}]

[ok, ok, error]

Send: {get_write_lock, foo, not_found}

[error,error, ok]

locker:lock(foo, pid(0,123,0))

Master #1 Master #2 Master #3



Client A Client B

[{lock, foo}] [{lock, foo}][{lock, foo}]

[ok, ok, error] [error, error, ok]

locker:lock(foo, pid(0,123,0))

Master #1 Master #2 Master #3



Client A Client B

[ok, ok, error] [error, error, ok]

Send: {write, foo, 123} Send: release_write_lock

[{lock, foo}] [{lock, foo}] [{lock, foo}]

locker:lock(foo, pid(0,123,0))

Master #1 Master #3Master #2



Client A Client B

[] [][]

[ok, ok, error] [error, error, ok]

Send: {write, foo, 123} Send: release_write_lock

locker:lock(foo, pid(0,123,0))

Master #1 Master #3Master #2



Use locker when

Strong consistency is sometimes needed

Protect resources

Leader election

Service discovery



Is it any good?



Some experts say yes,
some experts say no



Conclusion



Distributed systems are hard



We could maybe have 
made ZooKeeper work..



..but we now have our 
dream system



Ambitious, naive project
led to

big operational advantage



Q&A
http://github.com/wooga/locker

@knutin

http://github.com/wooga/locker
http://github.com/wooga/locker

