
BugSense
Big Data for mobile
with Erlang, C, LISP

Dionisis "Dio" Kakoliris
Head of Engineering
dgk@bugsense.com

BugSense Trivia

● Third biggest mobile SDK in the world
● Analyzing data from ~400M devices
● More than ~120k writes/updates per sec
● Custom Big Data database (LDB)
● Eleven engineers
● Cash positive

Data map landscape

Data processing landscape

Enter LDB

Distributed concurrent updates

Overview
● Complex Event Processing, In-Memory DB
● Time-series Stream Processor
● Super easy to setup/use - one package
● No big locks (fine-grained locking)
● Describe-your-data mentality
● C is fast
● C is ideal for destructive updates (imperative)
● "Let it crash!"

Overview (cont'd)
● LISP-like DSL for custom processing / views
● Ideal for parallelism (functional)
● Lazy loading of files (asynchronous)
● Saves data to disk (asynchronous)
● Modular / Extendable architecture
● Custom reducers / off-line processing

...And now, let's go BIG
● We love Erlang!
● Node isolation, replication, supervision
● Request processing and forwarding
● Distributed
● Ideal for building real-time systems
● Fast, robust, reliable
● YOU TRUST ERLANG

Why Erlang?
● Scaling
● Handles lots of connections efficiently (HTTP)
● Sending/receiving messages from/to nodes is trivial
● Building a replication/take over engine is easy
● Mnesia for storage and shared info
● C Linkedin Drivers
● Being able to connect to remote nodes
● All of the above - integrated in one language

Architecture

Snippet
RDLOCK_HASH_STR(kvm1->hashtab, id, bucket, 1, &hashv1, &hashv2,

&bloom);

if (!bloom) {

RDUNLOCK_HASH_STR(kvm1->hashtab, bucket);

return 0;

}

FIND_HASH_STR(kvm1->hashtab, bucket, id, val, struct kvm1_val_t *);

if (val) {

result = val->cntr;

RDUNLOCK_HASH_STR(kvm1->hashtab, bucket);

return result;

}

RDUNLOCK_HASH_STR(kvm1->hashtab, bucket);

Erlang <--> LDB
● Erlang is the right tool for the job
● Small language that handles a very crucial sector
● Actors are magnificent!
● Mnesia is your "faithful" companion
● Constantly evolving / getting better
● Erlang processes are your (million) friends!

More at: http://highscalability.com/blog/2012/11/26/bigdata-using-erlang-c-and-lisp-to-fight-the-
tsunami-of-mobi.html

Snippets...
spawn_ldb_app(NumOfKeyCells) ->

 Pid = spawn(ldb_appnode, create, [self()]),

 receive

 {ok, Port} ->

 io:format("New ldb_app started ~n", []),

 Pid ! {?START, self(), integer_to_list(1), integer_to_list(NumOfKeyCells)},

 receive

 {ok, []} ->

 ok

 end

 end,

 {Pid, Port}.

create(ParentPid) ->

 Port = open_port({spawn_driver, lethe_drv}, [binary]),

 ParentPid ! {ok, Port},

 loop(Port).

loop(Port) ->

 receive

 {?VIEW, Caller, Key, Value} ->

 port_command(Port, term_to_binary({?VIEW, Key, Value})),

 receive

 {ok, []} ->

 Caller ! {ok, []}; % THIS SHOULDNT BE FOO!

 {view, Key, Value, Result} ->

 Caller ! {view, Key, Value, Result};

 _ ->

 ignored

 end,

 loop(Port);

Snippets...

Bonus Stage: Why LISP?
● Very easy lexer, parser, analyzer, interpreter impl.
● SQL-ish queries
● Expressive power, abstraction
● S-expressions, heterogeneous multi-dim. lists
● Immutability => Ideal for parallel computing
● Tons of Data => Prefix notation
● Tons of Data => Data transformation FTW!

(define (in-all? arrays uid)

 (reduce (lambda (x acc) (and x acc))

 (map (lambda (x) (in? x uid))

 arrays)))

(define (in-all-timespan arrays uid from to)

 (map (lambda (x)

 (timebubble (timewarp (current-timespace) x)

 (in-all? arrays uid)))

 (range from to)))

(define (at-least-once-in-all? arrays uid from to)

 (reduce (lambda (x acc) (or x acc))

 (in-all-timespan arrays uid from to)))

(define (always-in-all? arrays uid from to)

 (reduce (lambda (x acc) (and x acc))

 (in-all-timespan arrays uid from to)))

(define (never-in-all? arrays uid from to)

 (not (at-least-once-in-all? arrays uid from to)))

Yet another snippet...

● Not easy hot code swapping
● Auxiliary tools for monitoring, support, configuration
● GUIs for the above
● Cross-platform
● Interoperability with other systems
● Support role for big and complex systems
● Tweaking - LDB has the potential to run everywhere!
● ...From your cell-phone to an HPC cluster!

Moving Forward

And?
● Use Erlang for your projects!
● It's small, easy and above-all it DELIVERS!
● Don't be scared by the complexity of modern systems
● Distributed systems are the present and future
● Harness this massive potential with Erlang
● START A PROJECT NOW!

Thank you!
Stay tuned for fresh stuff!

www.bugsense.com
blog.bugsense.com

