

MongooselM - Messaging that Scales

Michał Ślaski

© 1999-2013 Erlang Solutions Ltd.

 Instant messaging for Social Media, Gaming and Telecommunications

- Instant messaging for Social Media, Gaming and Telecommunications
- Solution designed for high volume

- Instant messaging for Social Media, Gaming and Telecommunications
- Solution designed for high volume
- Easily scalable distributed system

- Instant messaging for Social Media, Gaming and Telecommunications
- Solution designed for high volume
- Easily scalable distributed system
- Highly customisable platform thanks to industry standards and Open Source technology

Telecoms

(chat features are a part of standard communication software)

Telecoms

(chat features are a part of standard communication software)

Social Media

(messaging is the key part of social web sites)

Telecoms

(chat features are a part of standard communication software)

Social Media

(messaging is the key part of social web sites)

Gaming

(multi-user chats are an integral part of the gameplay and enhance the user experience)

Easy to work with

Support of XMPP

- a protocol used for Facebook chat and Google Talk
- seamless integration with many libraries and client applications

Open standard

Secure

Flexible

Decentralised

Efficient

Open standard

Standard formalised by the IETF through RFCs and extensions are published by the XSF

Secure

Flexible

Decentralised

Efficient

Open standard

Secure

Channel encryption, strong authentication, may be isolated from the public network

Flexible

Decentralised

Efficient

Open standard

Secure

Flexible

Custom functionality can be built on top of XMPP

Decentralised

Efficient

Open standard

Secure

Flexible

Decentralised

Anyone can run XMPP server and there is no central master server

Efficient

Open standard

Secure

Flexible

Decentralised

Efficient

Solves issues of polling approaches

Open standard

Secure

Flexible

Decentralised

Efficient

Proven

In use since 1998, many implementations and deployments, millions of end users

Open standard

Secure

Flexible

Decentralised

Efficient

Features

- Support for WebSockets ready for modern chatenabled web applications
- Multi-User Chat (XEP-0045)
- Service Discovery (XEP-0030)
- vCard (XEP-0054)
- Privacy Lists (XEP-0016)
- Private XML Storage (XEP-0049)

Extensible

- Customisable provides a base for bespoke solution to one's specific needs
 - push notifications to mobile devices
 - authentication plugins
 - reliable message delivery in mobile networks
- Has open sourced regression tests
 - github.com/esl/ejabberd_tests

Scalable

- Configurable database backends
 - Mnesia for simple deployments
 - MySQL for persistent data
 - Mnesia or Redis for transient data

Scalable

9

Load tests - environment

Test environment

Erlang/OTP R15B02

MongooselM 1.1

MySQL 5.5.24

Ubuntu 12.04 LTS 3.2.0-23-generic

Tsung 1.5.0a

redis 2.6.10

ejabberd 2.1.11

Load tests - dedicated box

MongooselM

AMD 8x3.3GHz, 32GB RAM

MySQL

Load tests - "max users"

User arrival rate: 150/s

User count: 400k

Roster size: 100

No message exchange

The aim was to check resource usage with maximum possible count of online users connected to server.

Load tests - "max message rate"

User arrival rate: 100/s

User count: 75k

Roster size: 100

Message rate: ~21k per second

The aim was to check resource usage when maximum message traffic is generated.

Load tests - Amazon EC2

- M1 Extra Large Instance
 - 15 GiB memory
 - 8 EC2 Compute Units
 (4 virtual cores with 2 EC2 Compute Units each)
 - I/O Performance: High

Load tests - Amazon EC2

MongooselM

m1.xlarge

MongooselM

m1.xlarge

MongooselM

m I .xlarge

Load tests - 3 MongooselM + Mnesia

User arrival rate: 130/s

User count: 50k

Roster size: 100

Presence rate: 120 per second (12k msg/s)

The aim was to check resource usage with all user data like passwords and rosters in Mnesia.

Time (s)

■ MiM 1 ■ MiM 2 ■ MiM 3

© 1999-2013 Erlang Solutions Ltd.

Load tests - Amazon EC2

MongooselM

m1.xlarge

MongooselM

m1.xlarge

MongooselM

m I .xlarge

MySQL

m I .xlarge

Load tests - 3 MongooselM + MySQL

User arrival rate: 130/s

User count: 330k

Roster size: 100

Presence rate: 120 per second (12k msg/s)

The aim was to check resource usage with all user data like passwords and rosters in MySQL

Load tests - Amazon EC2

MongooselM

m I .xlarge

MongooselM

m I .xlarge

MongooselM

m I .xlarge

redis

m I .xlarge

MySQL

m I .xlarge

Load tests - 3 MIM + redis + MySQL

User arrival rate: 2000/s

User count: 380k

Message rate: 8k per second

The aim was to check characteristics of a cluster of 3 MongooselM nodes with session data in redisinstead of mnesia.

© 1999-2013 Erlang Solutions Ltd.

ooVoo is the largest independent video communication service provider

- 70mm users
- Free, up to 12way high-quality service. Leader in group calling
- Apps for PC. Mac. Web. iPhone. iPad. Android. Facebook
- 10+ billion video minutes in 2012

Main Challenge - Scale

- 2010
 - 600K online users
 - 10M registered users
 - 500 messages/sec
- Due to constant and rapid usage grow infinite scale requirement

Today (2 years after)

- 11 scale units in 2 geographical locations
- x10 Usage growth
 - 2.2M online users (connected)
 - 70M registered users
 - 5,000+ messages per second
- 99.98% uptime

courtesy of Alex Fok, System Architect at ooVoo

Benefits

- Proven solution from an Erlang-focused company with expertise in instant messaging (over 300 clients since 1999)
- Rapid deployment
- Interoperability ensured by industry standards
- Minimal capital expenditure due to efficient runtime platform
- Pluggable authentication for ease of integration

MongooselM

Download

www.erlang-solutions.com/downloads/

Fork and contribute

https://github.com/esl/ejabberd

Contact us

ejabberd@erlang-solutions.com

Load tests - "WebSockets vs. BOSH"

User arrival rate: 90/s

User count: 10k

Message rate: 6k/s

The aim was to compare resource usage of WebSockets vs. BOSH.

