Disco: Beyond MapReduce

Prashanth Mundkur

Nokia

Mar 22, 2013

Outline

- BigData/MapReduce
- Disco
- Disco Pipeline Model
- Disco Roadmap

Data too big to fit in RAM/disk of any single machine

- Analyze chunks of data in parallel (maps)
- Collect intermediate results into a final result (reduce)
- Use a cluster of machines

MapReduce TaskGraph

Disco Origins

commit 1aa76c1eda8081317f66afbaf872c0f92dfc46f7 Author: Ville Tuulos <tuulos@parvus.pp.htv.fi> Date: Mon Jan 14 02:04:34 2008 -0800

Initial commit

Disco Architecture

Worker Protocol

Disco DFS

$\mathsf{Data} \text{ in } \mathsf{DDFS}$

Metadata (tags) in DDFS

Code size

	Hadoop 1.0	Disco (dev)	
Map-reduce	53333* (Java)	8053 [†] (Erlang)	
		3276* (Python)	
		1724* (OCaml)	
DFS	34301* (Java)	4600^{\dagger} (Erlang)	

- * David A. Wheeler's 'SLOCCount'
- † wc -1
- Disco's external dependencies:
 - HTTP library (mochiweb, 12.5kLOC)
 - Logging library (lager, 4.3kLOC)
 - Erlang/Python standard libraries

Disco scheduler bug: no backtracking

Shuffle in Disco: bulk user data through Erlang

Shuffle

Rethink

Limitations of MapReduce

Job computation is performed in three fixed stages

Rethink

Limitations of MapReduce

- Job computation is performed in three fixed stages
- Processing model is tied to content (key-value pairs)

Rethink

Limitations of MapReduce

- Job computation is performed in three fixed stages
- Processing model is tied to content (key-value pairs)
- No inter-task optimization of network resources (crucial for shuffle/reduce)

Node-locality of Tasks in MapReduce

Optimizing network-use based on Node-locality

Output grouping

Grouping by label per node (group_node_label)

Output grouping

Grouping per node (group_node)

pipeline ::= stage + stage ::= {grouping,task}

Pipelined Stages of Tasks

Other grouping options

MapReduce as a Pipeline

map-reduce = {split,map}, {group_label, reduce}

Disco Pipeline Model

Fixes existing issues

- backtracking scheduler
- no bulk data passes through Erlang

Disco Pipeline Model

Fixes existing issues

- backtracking scheduler
- no bulk data passes through Erlang
- Adds a flexible compute model
 - Allows multiple user-defined stages, as opposed to just map-(shuffle)-reduce
 - Exposes shuffle to user-code
 - Exposes node-locality to tasks, exploitable via user-selectable grouping options

Disco Pipeline Model

- Conservative extension
 - linear pipeline simpler than DAG
 - ▶ no need for a graph DSL as in Dryad

 More flexible platform for higher-level tools like Pig/FlumeJava/etc.

Pipeline Limitations

- no forks/joins in dataflow
- no iteration or recursion

New Task API for Pipelines

▶ no "map" or "reduce" tasks

New Task API for Pipelines

- no "map" or "reduce" tasks
- user pulls data from input via iterators (process)
- simpler handling of processing state (init, done)
- control iteration over input labels (input_hook)

Disco Roadmap

- Disco 0.5 coming soon
 - backtracking job coordinator
 - pipelines
 - alternative task API
 - plus support* for existing map-reduce API
- Evolve pipeline model / API
- Network-topology-aware task scheduler

Disco and Hadoop

- DDFS/HDFS storage are different
- Disco Pipelines/YARN compute models are different

Questions?

http://discoproject.org

DDFS

Design choices

- optimized for log-file storage (bulk immutable data files)
- data is not modified but stored as submitted (e.g. no chunking by default)
- replication of data and metadata (unlike Hadoop/HDFS)
- only metadata is mutable
- DAG structure as opposed to tree
 - $\rightarrow~{}_{\rm DAG}$ design imposes garbage collection

Implementation choices

- all metadata in readable JSON
- all data access over HTTP or local file
 - metadata/data can be recovered using scripts without needing a running DDFS

HADOOP VS DISCO BENCHMARKS

8-node physical cluster of Cisco UCS M2 each node with 4 Xeon, 128GB RAM, 512GB disk from 2011

Job Latency

Wordcount on a 1 byte file

	Completion time (ms)		
Hadoop	12324		
PDisco	359		
ODisco	35		

DFS Latencies

Read / Write a 1 byte file (avg in msecs)

		HDFS	DDFS
-	Reads	670	70
	Writes	720	136

DFS Read Throughput

DFS Write Throughput

Job Performance

Wordcount of English Wikipedia (33GB)

