
Disco: Beyond MapReduce

Prashanth Mundkur

Nokia

Mar 22, 2013



Outline

I BigData/MapReduce

I Disco

I Disco Pipeline Model

I Disco Roadmap



BigData/MapReduce

I Data too big to fit in RAM/disk of any single machine

−→

I Analyze chunks of data in parallel (maps)

I Collect intermediate results into a final result (reduce)

I Use a cluster of machines



MapReduce TaskGraph



Disco Origins

commit 1aa76c1eda8081317f66afbaf872c0f92dfc46f7

Author: Ville Tuulos <tuulos@parvus.pp.htv.fi>

Date: Mon Jan 14 02:04:34 2008 -0800

Initial commit



Disco Architecture



Worker Protocol

Worker Disco

Get-TaskInfo

TaskInfo

Get-Input

Input

Input-Error

Ok

Output

Ok

Done

Ok



Disco DFS



Data in ddfs

data:log:website

daily-log-2009-12-03_gz

daily-log-2009-12-03_gz

daily-log-2009-12-03_gz

daily-log-2009-12-04_gz

daily-log-2009-12-04_gz

daily-log-2009-12-04_gz

daily-log-2009-12-05_gz

daily-log-2009-12-05_gz

daily-log-2009-12-05_gz

data:log:assets

user:mike

data:log:peakday



Metadata (tags) in ddfs

Attributes

Tokens

Links



Code size

Hadoop 1.0 Disco (dev)

Map-reduce 53333? (Java) 8053† (Erlang)
3276? (Python)
1724? (OCaml)

DFS 34301? (Java) 4600† (Erlang)

? David A. Wheeler’s ‘SLOCCount’
† wc -l

I Disco’s external dependencies:
I http library (mochiweb, 12.5kLOC)
I Logging library (lager, 4.3kLOC)
I Erlang/Python standard libraries



Disco scheduler bug: no backtracking



Shuffle in Disco: bulk user data through Erlang



Rethink

Limitations of MapReduce

I Job computation is performed in three fixed stages

I Processing model is tied to content (key-value pairs)

I No inter-task optimization of network resources (crucial for
shuffle/reduce)



Rethink

Limitations of MapReduce

I Job computation is performed in three fixed stages

I Processing model is tied to content (key-value pairs)

I No inter-task optimization of network resources (crucial for
shuffle/reduce)



Rethink

Limitations of MapReduce

I Job computation is performed in three fixed stages

I Processing model is tied to content (key-value pairs)

I No inter-task optimization of network resources (crucial for
shuffle/reduce)



Node-locality of Tasks in MapReduce



Optimizing network-use based on Node-locality



Output grouping

Grouping by label per node (group node label)



Output grouping

Grouping per node (group node)



Pipelined Stages of Tasks

pipeline ::= stage +

stage ::= {grouping, task}



Other grouping options



MapReduce as a Pipeline

map-reduce = {split, map}, {group label, reduce}



Disco Pipeline Model

I Fixes existing issues
I backtracking scheduler
I no bulk data passes through Erlang

I Adds a flexible compute model
I Allows multiple user-defined stages, as opposed to just

map-(shuffle)-reduce
I Exposes shuffle to user-code
I Exposes node-locality to tasks, exploitable via user-selectable

grouping options



Disco Pipeline Model

I Fixes existing issues
I backtracking scheduler
I no bulk data passes through Erlang

I Adds a flexible compute model
I Allows multiple user-defined stages, as opposed to just

map-(shuffle)-reduce
I Exposes shuffle to user-code
I Exposes node-locality to tasks, exploitable via user-selectable

grouping options



Disco Pipeline Model

I Conservative extension
I linear pipeline simpler than dag
I no need for a graph dsl as in Dryad

I More flexible platform for higher-level tools like
Pig/FlumeJava/etc.



Pipeline Limitations

I no forks/joins in dataflow

I no iteration or recursion



New Task API for Pipelines

I no “map” or “reduce” tasks

I user pulls data from input via iterators (process)

I simpler handling of processing state (init, done)

I control iteration over input labels (input hook)



New Task API for Pipelines

I no “map” or “reduce” tasks

I user pulls data from input via iterators (process)

I simpler handling of processing state (init, done)

I control iteration over input labels (input hook)



Disco Roadmap

I Disco 0.5 coming soon
I backtracking job coordinator
I pipelines
I alternative task API
I plus support? for existing map-reduce API

I Evolve pipeline model / API

I Network-topology-aware task scheduler



Disco and Hadoop

I DDFS/HDFS storage are different

I Disco Pipelines/YARN compute models are different



Questions?

http://discoproject.org



ddfs

Design choices

I optimized for log-file storage (bulk immutable data files)

I data is not modified but stored as submitted (e.g. no
chunking by default)

I replication of data and metadata (unlike Hadoop/hdfs)

I only metadata is mutable
I dag structure as opposed to tree

→ dag design imposes garbage collection

Implementation choices

I all metadata in readable json

I all data access over http or local file
I metadata/data can be recovered using scripts without needing

a running ddfs



Hadoop vs Disco Benchmarks

8-node physical cluster of Cisco UCS M2
each node with 4 Xeon, 128GB RAM, 512GB disk

from 2011



Job Latency

Wordcount on a 1 byte file

Completion time (ms)

Hadoop 12324
PDisco 359
ODisco 35



DFS Latencies

Read / Write a 1 byte file (avg in msecs)

HDFS ddfs

Reads 670 70
Writes 720 136



DFS Read Throughput

64K 256K 1M 4M 16M 64M 256M 1G 4G 16G 64G
10-2

10-1

100

101

102

103
d
u
ra

ti
o
n
 (

se
co

n
d
s)

DDFS
HDFS



DFS Write Throughput

64K 256K 1M 4M 16M 64M 256M 1G 4G 16G 64G
10-1

100

101

102

103
d
u
ra

ti
o
n
 (

se
co

n
d
s)

DDFS
HDFS



Job Performance
Wordcount of English Wikipedia (33GB)

0 200 400 600 800 1000 1200 1400
seconds since start

Hadoop

ODisco

Map
Shuffle
Reduce


