
James Aimonetti

Lead Architect @ 2600Hz

https://github.com/2600hz/kazoo

and

Presented by:

* Distributed Telephony Engine

* Layered approach to processing calls/events

* Event-driven design

What is Kazoo?

Distributed Telephony Engine

* Requirements
- Redundancy/ Fault tolerance

a) Supervision of calls
b) Server and data center

- High level call handling
- Scale horizontally—easily

Layered Approach to Processing Calls/events

* Under the hood:
- OpenSIPS/ Kamailio
- FreeSWITCH
- RabbitMQ
- BigCouch
- Kazoo

Layered Approach to Processing Calls/events

* SIP
- Carriers/Clients <=> OpenSIPS/ Kamailio/ FreeSWITCH

* Distributed Erlang
- FreeSwitch <=> ecallmgr (low level FreeSWITCH abstraction)

* AMQP
- ecallmgr/whapps <=> RabbitMQ

*HTTP
- whapps <=> BigCouch
- Crossbar (whapp) <=> REST Clients (KazooUI)
- Pivot (whapp) <=> Your Web Server

Kazoo Server Layout

Event Driven Design

* Incoming calls

* Registrations

* HTTP REST APIs

* Timer-based cleanup

* Direct DB manipulation (naughty)

Building Kazoo

* Utilities (wh_json, wh_json_validator, wh_util)

* AMQP-based behaviour (gen_listener)

* Caching of data (wh_cache)

* Callflow processing (cf_exe + friends)

* Coupling FTW (gen_listener + gen_fsm)

Utilities (wh_json, wh_json_validator, wh_util)

wh_json (lib/whistle-1.0.0/src/wh_json.erl)

* Beginning
- Used mochijson2 for encoding/decoding
- Interact with the data structure as opaque object (like dict)

* Now
- types defined for use in specs

a) wh_json:object() and wh_json:objects() most common

- aliasing type conversion (get_binary_value, get_integer_value)
- ability to change encoder/decoder (using ejson atm)

wh_json_validator (lib/whistle-1.0.0/src/wh_json_validator.erl)
** based on http://tools.ietf.org/html/draft-zyp-json-schema-03

* Beginning
- Edouard (intern) wrote first module

* Now
- Both Karl and James have written their versions
- is_valid(JObj :: wh_json:object(), Schema :: wh_json:object())
- now returns {'pass', FixedJObj :: wh_json:object()} |

 {'fail', [{FailedKeyPath, FailureMessage},...]}

** pending rewrite or using 3rd party library

Utilities (wh_json, wh_json_validator, wh_util)

http://tools.ietf.org/html/draft-zyp-json-schema-03

wh_util (lib/whistle-1.0.0/src/wh_util.erl)

* Beginning
- Dumping ground

a) Type conversion, timer offsets, encoding account IDs, and more

* Now
- Slowly breaking out into meaningfully-named modules

Utilities (wh_json, wh_json_validator, wh_util)

AMQP-based behaviour (gen_listener)

gen_listener lib/whistle-1.0.0/src/gen_listener.erl
- built on top of gen_server
- async processing of received AMQP messages

* Beginning
- Each consumer used low level primitives (new_queue, consume)
- Lots of channels (expensive), lots of queues
- Each process responsible for handling broker/connection errors
- Herding cats

* Now
- Use gen_listener
- Spawns handlers for matching messages
- Fewer consumers (faster startup)
- All AMQP-specific code is hidden from application code

a) Toying with XMPP extensions to gen_listener

wh_cache (lib/whistle-1.0.0/src/wh_cache.erl)

* Beginning
- dict wrapped with a gen_server, with per-entry TTL
- registered name, for all to use
- serialized access
- mostly for caching DB objects
- Simple API: store, fetch, peek, erase, flush

Caching of data (wh_cache)

Caching of data (wh_cache)

wh_cache (lib/whistle-1.0.0/src/wh_cache.erl)

* Evolving
- Migrated to ETS-based storage
- using a record instead of 2-tuples with more metadata
- Application-localized cache processes
- complex work stored
- callbacks on entry expiration/expulsion
- soft real-time decision making easier
- invalidating entries remained problematic

Caching of data (wh_cache)

wh_cache (lib/whistle-1.0.0/src/wh_cache.erl)

* Current
- using gen_listener (when appropriate) in place of gen_server
- feed document change events to invalidate cache entries
- near real-time updates now
- original API intact, more bells and whistles (bells and kazoos?)
- auto-flush tied to other system events (server topology changes)

Callflow processing (cf_exe + friends)

whistle_apps/apps/callflow/src/cf_exe.erl
whistle_apps/apps/callflow/src/modules/

* Beginning
- Processed callflow directly, moving into the cf_* modules
- Lots of defensive code (Pokemon exception handling)

* Now
- cf_exe is a gen_listener, receives and proxies call events
- navigates the callflow JSON tree
- spawns/monitors cf_* modules to process the nodes in the tree

"flow": {
 "data": {
 "id": "128d81866e595be608a51e51e03be",
 "timeout": "20",
 "can_call_self": false
 },
 "module": "user",
 "children": {
 "_": {
 "data": {
 "id": "9afa4973c3b4440f522955fc023a9"
 },
 "module": "voicemail",
 "children": {}
 }
 }
 }

Callflow processing (cf_exe + friends)

Callflow application process layout

Coupling FTW (gen_listener + gen_fsm)

* ACDc: Automatic Call Distribution commander (call queues)

* Both agents and call queues are represented by these couplings
- Better than mixing FSM-style state transitions into gen_server

Coupling FTW (gen_listener + gen_fsm)

* Beginning

handle_cast({dtmf, DTMF}, #state{status='connecting'}=State) →
 State1 = process_dtmf(DTMF, State), % might update status
 {noreply, State};
handle_cast({dtmf, _}, State) →
 {noreply, State};

** Fine for very simple cases, but quickly degenerates

ACDc layout of agent processes:

* Supervisory Tree

- acdc_agents_sup:
- simple_one_for_one of acdc_agent_sup's

- acdc_agent_sup:
- one_for_all supervisor, per agent

Coupling FTW (gen_listener + gen_fsm)

Processes under acdc_agent_sup

- acdc_agent_fsm:
- gen_fsm
- main states – ready, connecting, answered, waiting, paused, outbound

- acdc_agent_listener:
- gen_listener
- handles receiving call events, acdc events, etc
- handles sending call commands, acdc commands, etc
- feeds received events into FSM, recv commands from FSM

Coupling FTW (gen_listener + gen_fsm)

Call Queue Process layout

Project: https://github.com/2600hz/kazoo

Website: http://2600hz.org

Me: james@2600hz.org

Interested? We're unofficially hiring for Erlang programmers!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

