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Huffington Post

• 500 MM PVs/week

• 12 MM UVs/week

• 200MM+ Comments, 2MM Comments per 
week on average

• Strong community
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Huffpost Live
• 12 hour live streaming network

• Bring the community into the conversation

• Real time commenting across our 30+ live segments per 
day from NY and LA

• Real time segment transitions across our live stream

• Real time updates of content below the video player

• Browser refresh was not really an option, we needed to 
push

• Could not guarantee everyone was on HTML5 browsers

• DEMO
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Tech Stack
• Ruby/Rails - CMS and APIs

• Backbone.js - Client UI Framework

• Erlang - Websockets and AMQP bridge

• MongoDB - Database

• Memcache - Caching

• Varnish - Edge caching

• Elastic Search - Searching
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Realtime Messages

• Comments are being ingested from our central 
commenting platform

• Video transitions are being initiated by our production 
team via our internal CMS

• Resources below video player are being pushed and 
reordered in realtime by producers

• Various inputs to publish a realtime message, needed a 
generic solution that could accommodate all these 
needs without too much burden on the publishing app
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Some options we 
looked at

• Node.js / Socket.io 

• SockJS

• EM-Websocket

• CometD

• There are infinitely more not listed here
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Results
• Node.js / Socket.io 

• Didnt want a flash fallback

• Was not crazy about the maturity level of node or the concurrency story for multi-core (it didnt 
exist)

• Required persistent backend to scale horizontally, i believe only Redis is supported

• Focus was changing to engine.io

• EM-Websocket

• Wasnt very confident that ruby could scale and handle the concurrency but we had a lof of Ruby 
experience

• CometD

• Only really offered a long-polling option, we wanted to be able to take advantage of websockets for 
browsers that supported it and not require an upgrade later on

• Websocket support buggy and not fully supported

• SockJS

• No flash fallback

• Auto fallback to xhr-polling, JSONP, etc if browsers dont support websockets

• no change in code for different browsers

• native websocket client support

• Nice support for load balancers and no shared state 

• written in Erlang :) 
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Decision?

• SockJS :)

• Integrated the sockjs-client javascript API 
into our backbone application

• Tested (and using) native websocket client 
on  iOS, Android and Adobe Flash (AIR)

• Worked with our Loadbalancers
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What is SockJS?

SockJS is a browser JavaScript library that provides a WebSocket-like 
object. SockJS gives you a coherent, cross-browser, Javascript API 
which creates a low latency, full duplex, cross-domain communication 
channel between the browser and the web server.

Under the hood SockJS tries to use native WebSockets first. If that fails it 
can use a variety of browser-specific transport protocols and presents them 
through WebSocket-like abstractions.
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Load Balancing in 
SockJS

• Session URL =>  URL/prefix/server/session

• From SockJS Protocol:
The  session  between  the  client  and  the  server  is  always  initialized  by  the  client.  The  client  chooses  server_id,  which  
should  be  a  three  digit  number:  000  to  999.  It  can  be  supplied  by  user  or  randomly  generated.  The  main  reason  for  this  
parameter  is  to  make  it  easier  to  configure  load  balancer  -­‐‑  and  enable  sticky  sessions  based  on  first  part  of  the  url.

                      Second  parameter  session_id  must  be  a  random  string,  unique  for  every  session.

• http://mydomain.com/myprefix/
050/1y3d3roe/websocket
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Comments Workflow
• Comments at the Huffington Post are all moderated, both by 

machine learning technology and humans using an internal 
service and set of APIs

• Comments are either auto-rejected, auto-approved, or placed 
into a manual moderation queue where they are manually 
approved

• Realtime comments was one of our primary use cases for 
websockets

• We bridged the workflow between the Websocket 
infrastructure and the comment infrastructure by building an 
AMQP bridge, which essentially consumed every approved 
comment and then became a message producer (similar to 
shovel but we needed to do some transformation)
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CMS Workflow
• Producer in control room manages the realtime 

web portal.  Decides when to transition videos to 
the next segment

• Producer in control room manages the resource 
well below video and reorders as needed

• The CMS becomes a producer of a new message 
to initiate global state change of application

• Leveraged AMQP/EventMachine inside CMS 
apps
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Some challenges before 
we started

• Nobody knew erlang, and we didn’t have a lot 
of time to build the platform

• Native support for websockets in the load 
balancers was very new and virtually beta code

• We were concerned about message latency. 
Our model is relatively low throughput low 
latency

• We didnt know if it would work :) 
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Outbreak

• We decided to name it Outbreak

• A set of infrastructure middleware 
components that allowed a generic 
mechanism to publish and subscribe 

• Built with the mindset of being reused 
more broadly as time went on, didnt want 
it built too specific for our exact use case
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Concept

• Outbreak is a very simple but generic concept

• Consumers wait for messages for the 
channels they are subscribed to

• Producers send messages to a predefined 
RabbitMQ topic 

• Outbreak bridges the two so consumers and 
producers can know nothing about each other  
or care how messages are delivered
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Subscribing
• We built a very simplistic json structure that allowed 

the clients to communicate with the backend

• We allow 3 actions, ‘sub’, ‘unsub’, ‘query’

• format of the payload is { “action” : “sub”, “channel” : 
“chatroom”, “id” : 333 }

• Sub subscribes to the given channel and id

• Unsub unsubscribes the user from given channel and 
ID

• Query simply returns all of your active subscriptions
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Subscribing
• When a subscription or unsubscription is received we store 

it in an ordered ETS table

• We store the SockJS connection object along with the 
channel and ID requested (we anchor the Tuple with 
Channel and ID since this is faster with ets:select() )
subscribe(C,I,Conn) -> 

  Rec = {{outbreak_util:tostring(C),outbreak_util:tostring(I),Conn},Conn},

  ets:insert(?WS_ETS_TABLE,Rec)

--------------------------------------------------------------

unsubscribe(C,I,Conn) -> 

  Key = {outbreak_util:tostring(C),outbreak_util:tostring(I),Conn},

  ets:delete(?WS_ETS_TABLE,Key),
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Subscribing
• The Conn object from SockJS is special 

because it allows us to simply extract from 
the ETS table and call Conn:send() on it

• Users Conn object only lives on one node, 
no shared state

• We will see in the publishing slides how we 
use this to simply loop through all matching 
connections for a given Channel / ID combo
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Publishing

• Currently we leverage RabbitMQ as our 
publishing queue

• We rely very heavily on the concept of 
Routing Keys and Topics

• We dont require any SockJS node to be 
aware of any other node.  
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Publishing
• Topics are leveraged so that all nodes receive a copy of 

the message, this prevents having to share state

• When a message is published it is published to a single 
Topic used by Outbreak with a routing key in the format 
of prefix.channel.id   

• All outbreak nodes subscribe to a single topic named 
prefix.# where prefix is arbitrary and just a namespace

• In RabbitMQ ‘#’ means any level of routing key 

• The routing key is critical when publishing and 
determines which subscribers get the message
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Quick Example
Subscribe

• 2 users want to listen to a chatroom , UserA 
and UserB, each get sent to a different sockjs 
node

• They both send the payload to the server in 
the format { “action” : “sub”, “channel” : 
“chatroom”, “id” : 103 }

• Our server inserts 1 record to the ETS table 
on each node with the SockJS session object 
and the subscription {chatroom, 103}
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Quick Example 
Publish

• Moderator in the backend decides to publish a message to 
chatroom 103

• He publishes a message to RabbitMQ Topic using the routing 
key outbreak.chatroom.103

• The consumer on both SockJS nodes receives a message on 
the Topic with a routing key outbreak.chatroom.103

• Our server converts that to Channel=chatroom and ID=103

• Each server queries ETS for sessions matching {chatroom,
103}

• We call Conn:send(msg) on the object in the ETS table
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Some Challenges
• This model suits us but we are bound by the 

performance of a single rabbit server 

• Monitoring RabbitMQ from our code took a lot of 
testing but now it works great and is quite robust.  
We can shut down rabbit nodes and the server 
recovers gracefully (thank you monitor() ) 

• Native mobile clients needed to use native 
websockets which meant implementing our own 
heartbeats.  

• I love Erlang, I do not love making a release :)  That 
was a long battle but now works great. 
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Performance
• We got SockJS to 100,000 connections pretty easily 

with sub second latency.  This required a fair bit of 
tuning

• +P,  sysctl, etc.

• SockJS has a major performance flaw right now in that 
it JSON encodes every message, needs to be 
refactored to encode once publish many, will improve 
perf greatly

• Refactoring some message passing overhead with 
JSON issues can probably bring SockJS way higher
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Tune your kernel
net.ipv4.tcp_rmem = 4096 87380 16777216

net.ipv4.tcp_wmem = 4096 65536 16777216

kernel.sem = 250 32000 100 128

net.core.rmem_default = 262144

net.core.rmem_max = 8388608

net.core.wmem_default = 262144

net.core.wmem_max = 8388608

net.core.netdev_max_backlog = 8192

net.core.somaxconn = 8192

net.ipv4.ip_local_port_range = 1024 65000

net.ipv4.tcp_tw_reuse = 1 26

Tuesday, 26 March 2013



Max Ports 

in vm.args : 

## Increase number of processes

+P 512000

## Increase number of concurrent ports/
sockets

-env ERL_MAX_PORTS 512000

27

Tuesday, 26 March 2013



Whats next?
• Team working on open sourcing outbreak

• Would like to build in such a way that the message 
bus was a configurable “adapter” so you can use 
ActiveMQ, RabbitMQ, ZeroMQ, etc.  Allow 
developers to build adapters and just have an API

• Expose publishing as an HTTP interface

• Team will work on fixing some SockJS performance 
issues 

• We are hiring :)
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Questions ?

Adam Denenberg

adam.denenberg@huffingtonpost.com

@denen
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