
Realtime Web
@HuffingtonPost

Websockets, SockJS and RabbitMQ

Adam Denenberg
VP Engineering

@denen
adam.denenberg@huffingtonpost.com

1

Tuesday, 26 March 2013

mailto:adam.denenberg@huffingtonpost.com
mailto:adam.denenberg@huffingtonpost.com

Huffington Post

• 500 MM PVs/week

• 12 MM UVs/week

• 200MM+ Comments, 2MM Comments per
week on average

• Strong community

2

Tuesday, 26 March 2013

Huffpost Live
• 12 hour live streaming network

• Bring the community into the conversation

• Real time commenting across our 30+ live segments per
day from NY and LA

• Real time segment transitions across our live stream

• Real time updates of content below the video player

• Browser refresh was not really an option, we needed to
push

• Could not guarantee everyone was on HTML5 browsers

• DEMO

3

Tuesday, 26 March 2013

Tech Stack
• Ruby/Rails - CMS and APIs

• Backbone.js - Client UI Framework

• Erlang - Websockets and AMQP bridge

• MongoDB - Database

• Memcache - Caching

• Varnish - Edge caching

• Elastic Search - Searching

4

Tuesday, 26 March 2013

Realtime Messages

• Comments are being ingested from our central
commenting platform

• Video transitions are being initiated by our production
team via our internal CMS

• Resources below video player are being pushed and
reordered in realtime by producers

• Various inputs to publish a realtime message, needed a
generic solution that could accommodate all these
needs without too much burden on the publishing app

5

Tuesday, 26 March 2013

Some options we
looked at

• Node.js / Socket.io

• SockJS

• EM-Websocket

• CometD

• There are infinitely more not listed here

6

Tuesday, 26 March 2013

Results
• Node.js / Socket.io

• Didnt want a flash fallback

• Was not crazy about the maturity level of node or the concurrency story for multi-core (it didnt
exist)

• Required persistent backend to scale horizontally, i believe only Redis is supported

• Focus was changing to engine.io

• EM-Websocket

• Wasnt very confident that ruby could scale and handle the concurrency but we had a lof of Ruby
experience

• CometD

• Only really offered a long-polling option, we wanted to be able to take advantage of websockets for
browsers that supported it and not require an upgrade later on

• Websocket support buggy and not fully supported

• SockJS

• No flash fallback

• Auto fallback to xhr-polling, JSONP, etc if browsers dont support websockets

• no change in code for different browsers

• native websocket client support

• Nice support for load balancers and no shared state

• written in Erlang :)

7

Tuesday, 26 March 2013

Decision?

• SockJS :)

• Integrated the sockjs-client javascript API
into our backbone application

• Tested (and using) native websocket client
on iOS, Android and Adobe Flash (AIR)

• Worked with our Loadbalancers

8

Tuesday, 26 March 2013

What is SockJS?

SockJS is a browser JavaScript library that provides a WebSocket-like
object. SockJS gives you a coherent, cross-browser, Javascript API
which creates a low latency, full duplex, cross-domain communication
channel between the browser and the web server.

Under the hood SockJS tries to use native WebSockets first. If that fails it
can use a variety of browser-specific transport protocols and presents them
through WebSocket-like abstractions.

9

Tuesday, 26 March 2013

Load Balancing in
SockJS

• Session URL => URL/prefix/server/session

• From SockJS Protocol:
The session between the client and the server is always initialized by the client. The client chooses server_id, which
should be a three digit number: 000 to 999. It can be supplied by user or randomly generated. The main reason for this
parameter is to make it easier to configure load balancer -­‐‑ and enable sticky sessions based on first part of the url.

 Second parameter session_id must be a random string, unique for every session.

• http://mydomain.com/myprefix/
050/1y3d3roe/websocket

10

Tuesday, 26 March 2013

Comments Workflow
• Comments at the Huffington Post are all moderated, both by

machine learning technology and humans using an internal
service and set of APIs

• Comments are either auto-rejected, auto-approved, or placed
into a manual moderation queue where they are manually
approved

• Realtime comments was one of our primary use cases for
websockets

• We bridged the workflow between the Websocket
infrastructure and the comment infrastructure by building an
AMQP bridge, which essentially consumed every approved
comment and then became a message producer (similar to
shovel but we needed to do some transformation)

11

Tuesday, 26 March 2013

CMS Workflow
• Producer in control room manages the realtime

web portal. Decides when to transition videos to
the next segment

• Producer in control room manages the resource
well below video and reorders as needed

• The CMS becomes a producer of a new message
to initiate global state change of application

• Leveraged AMQP/EventMachine inside CMS
apps

12

Tuesday, 26 March 2013

Some challenges before
we started

• Nobody knew erlang, and we didn’t have a lot
of time to build the platform

• Native support for websockets in the load
balancers was very new and virtually beta code

• We were concerned about message latency.
Our model is relatively low throughput low
latency

• We didnt know if it would work :)

13

Tuesday, 26 March 2013

Outbreak

• We decided to name it Outbreak

• A set of infrastructure middleware
components that allowed a generic
mechanism to publish and subscribe

• Built with the mindset of being reused
more broadly as time went on, didnt want
it built too specific for our exact use case

14

Tuesday, 26 March 2013

Concept

• Outbreak is a very simple but generic concept

• Consumers wait for messages for the
channels they are subscribed to

• Producers send messages to a predefined
RabbitMQ topic

• Outbreak bridges the two so consumers and
producers can know nothing about each other
or care how messages are delivered

15

Tuesday, 26 March 2013

16

Tuesday, 26 March 2013

Subscribing
• We built a very simplistic json structure that allowed

the clients to communicate with the backend

• We allow 3 actions, ‘sub’, ‘unsub’, ‘query’

• format of the payload is { “action” : “sub”, “channel” :
“chatroom”, “id” : 333 }

• Sub subscribes to the given channel and id

• Unsub unsubscribes the user from given channel and
ID

• Query simply returns all of your active subscriptions

17

Tuesday, 26 March 2013

Subscribing
• When a subscription or unsubscription is received we store

it in an ordered ETS table

• We store the SockJS connection object along with the
channel and ID requested (we anchor the Tuple with
Channel and ID since this is faster with ets:select())
subscribe(C,I,Conn) ->

 Rec = {{outbreak_util:tostring(C),outbreak_util:tostring(I),Conn},Conn},

 ets:insert(?WS_ETS_TABLE,Rec)

--

unsubscribe(C,I,Conn) ->

 Key = {outbreak_util:tostring(C),outbreak_util:tostring(I),Conn},

 ets:delete(?WS_ETS_TABLE,Key),

18

Tuesday, 26 March 2013

Subscribing
• The Conn object from SockJS is special

because it allows us to simply extract from
the ETS table and call Conn:send() on it

• Users Conn object only lives on one node,
no shared state

• We will see in the publishing slides how we
use this to simply loop through all matching
connections for a given Channel / ID combo

19

Tuesday, 26 March 2013

Publishing

• Currently we leverage RabbitMQ as our
publishing queue

• We rely very heavily on the concept of
Routing Keys and Topics

• We dont require any SockJS node to be
aware of any other node.

20

Tuesday, 26 March 2013

Publishing
• Topics are leveraged so that all nodes receive a copy of

the message, this prevents having to share state

• When a message is published it is published to a single
Topic used by Outbreak with a routing key in the format
of prefix.channel.id

• All outbreak nodes subscribe to a single topic named
prefix.# where prefix is arbitrary and just a namespace

• In RabbitMQ ‘#’ means any level of routing key

• The routing key is critical when publishing and
determines which subscribers get the message

21

Tuesday, 26 March 2013

Quick Example
Subscribe

• 2 users want to listen to a chatroom , UserA
and UserB, each get sent to a different sockjs
node

• They both send the payload to the server in
the format { “action” : “sub”, “channel” :
“chatroom”, “id” : 103 }

• Our server inserts 1 record to the ETS table
on each node with the SockJS session object
and the subscription {chatroom, 103}

22

Tuesday, 26 March 2013

Quick Example
Publish

• Moderator in the backend decides to publish a message to
chatroom 103

• He publishes a message to RabbitMQ Topic using the routing
key outbreak.chatroom.103

• The consumer on both SockJS nodes receives a message on
the Topic with a routing key outbreak.chatroom.103

• Our server converts that to Channel=chatroom and ID=103

• Each server queries ETS for sessions matching {chatroom,
103}

• We call Conn:send(msg) on the object in the ETS table

23

Tuesday, 26 March 2013

Some Challenges
• This model suits us but we are bound by the

performance of a single rabbit server

• Monitoring RabbitMQ from our code took a lot of
testing but now it works great and is quite robust.
We can shut down rabbit nodes and the server
recovers gracefully (thank you monitor())

• Native mobile clients needed to use native
websockets which meant implementing our own
heartbeats.

• I love Erlang, I do not love making a release :) That
was a long battle but now works great.

24

Tuesday, 26 March 2013

Performance
• We got SockJS to 100,000 connections pretty easily

with sub second latency. This required a fair bit of
tuning

• +P, sysctl, etc.

• SockJS has a major performance flaw right now in that
it JSON encodes every message, needs to be
refactored to encode once publish many, will improve
perf greatly

• Refactoring some message passing overhead with
JSON issues can probably bring SockJS way higher

25

Tuesday, 26 March 2013

Tune your kernel
net.ipv4.tcp_rmem = 4096 87380 16777216

net.ipv4.tcp_wmem = 4096 65536 16777216

kernel.sem = 250 32000 100 128

net.core.rmem_default = 262144

net.core.rmem_max = 8388608

net.core.wmem_default = 262144

net.core.wmem_max = 8388608

net.core.netdev_max_backlog = 8192

net.core.somaxconn = 8192

net.ipv4.ip_local_port_range = 1024 65000

net.ipv4.tcp_tw_reuse = 1 26

Tuesday, 26 March 2013

Max Ports

in vm.args :

Increase number of processes

+P 512000

Increase number of concurrent ports/
sockets

-env ERL_MAX_PORTS 512000

27

Tuesday, 26 March 2013

Whats next?
• Team working on open sourcing outbreak

• Would like to build in such a way that the message
bus was a configurable “adapter” so you can use
ActiveMQ, RabbitMQ, ZeroMQ, etc. Allow
developers to build adapters and just have an API

• Expose publishing as an HTTP interface

• Team will work on fixing some SockJS performance
issues

• We are hiring :)

28

Tuesday, 26 March 2013

Questions ?

Adam Denenberg

adam.denenberg@huffingtonpost.com

@denen

29

Tuesday, 26 March 2013

mailto:adam.denenberg@huffingtonpost.com
mailto:adam.denenberg@huffingtonpost.com

