
  

Welcome!



  

Scaling with Erlang

Building a large pubsub-with-history system



  

Me

Paul Peregud
● Senior developer at SilverSoft Sp. z o.o.,

tech lead of Talos project for Onet S.A. 

● Developer at LivePress Inc.

paulperegud@gmail.com



  

Topics

● API
● Performance
● Scalability
● Reliability



  

Business side

● Events
– Sports

– Politics

– Tech

● Authors
● Delivery system (aka Talos system)
● Client's browser



  

Hardware

● 3 nodes
–     Xeon E5-2650

–     32 cores

–     166 GB RAM

–     1 Gbps



  

APIs

● SockJS (end users)
– Websocket

– Xhr-streaming

– Jsonp-polling

● HTTP REST (authors)



  

SockJS

● Original
– Up to 100k per node

– Latency long tail (up to 60 sec)



  

SockJS rewrite

● 1 active process per client (any protocol)
● avoid multiple encoding of same data
● mobile browsers support added



  

Results?

● No lock congestion on timers
● Up to 700k of connections per node
● Stable, low latency



  

Broadcast speed

● 1.1 latency for 500k users (as measured for 95 
percentile for messages of size 500b)



  

Scalability

● SMP
● Minimizing
● Automatization
● Logging and debugging
● Tools



  

SMP

● Pubsub-with-history evolution
– Single process pubsub

– Public ets

– Next step: 
● named public ets per scheduler
● phash2(id(), n)
● up to 300k of subscribes per second!



  

Other stuff?

● Things like real-time stats are helpful, but non-
essential. Make sure they are not taking too 
much resources. Design it to be self-limiting



  

Performance

● Latency, latency, latency!
● Socket accept rate

– (troublesome with HTTP-based protocols)

● Broadcast speed
● Hardware issues



  

HTTP accept rate?

● Add
– More servers

– More sockets

– More acceptors



  

Minimizing

● any message flow
● broadcast messages
● auxiliary messages
● subscriber counts
● stats messages



  

Automation

● Up
● Down
● Limits



  

Logging and debugging

● Single error does not matter!
● Statistics matter - watch out for elevated error 

rate!
● Logging may be expensive
● Out-Of-Band logging



  

Tools

● web panels aka dashboards
● CLI tools
● hot code upgrades
● and rollbacks!



  

Message delivery

● reordering
● caching and sending with subscribe with 

message id
● idempotency



  

Mnesia

● Cons
– It's not magic! ;)

● Pros
– Zero configuration

– Blazing fast reads using mnesia:fun/2



  

Unanswered questions

● Removing dead node from cluster
● Network spit
● Limits of scaling for single writer scenario



  

Fault tolerance

● Nodes can and will crash
● Automatic reconnect is easy with static list of 

nodes



  

Talos authors

● Paul Peregud
● Gleb Peregud
● Peter Flis


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

