
  

Welcome!



  

Scaling with Erlang

Building a large pubsub-with-history system



  

Me

Paul Peregud
● Senior developer at SilverSoft Sp. z o.o.,

tech lead of Talos project for Onet S.A. 

● Developer at LivePress Inc.

paulperegud@gmail.com



  

Topics

● API
● Performance
● Scalability
● Reliability



  

Business side

● Events
– Sports

– Politics

– Tech

● Authors
● Delivery system (aka Talos system)
● Client's browser



  

Hardware

● 3 nodes
–     Xeon E5-2650

–     32 cores

–     166 GB RAM

–     1 Gbps



  

APIs

● SockJS (end users)
– Websocket

– Xhr-streaming

– Jsonp-polling

● HTTP REST (authors)



  

SockJS

● Original
– Up to 100k per node

– Latency long tail (up to 60 sec)



  

SockJS rewrite

● 1 active process per client (any protocol)
● avoid multiple encoding of same data
● mobile browsers support added



  

Results?

● No lock congestion on timers
● Up to 700k of connections per node
● Stable, low latency



  

Broadcast speed

● 1.1 latency for 500k users (as measured for 95 
percentile for messages of size 500b)



  

Scalability

● SMP
● Minimizing
● Automatization
● Logging and debugging
● Tools



  

SMP

● Pubsub-with-history evolution
– Single process pubsub

– Public ets

– Next step: 
● named public ets per scheduler
● phash2(id(), n)
● up to 300k of subscribes per second!



  

Other stuff?

● Things like real-time stats are helpful, but non-
essential. Make sure they are not taking too 
much resources. Design it to be self-limiting



  

Performance

● Latency, latency, latency!
● Socket accept rate

– (troublesome with HTTP-based protocols)

● Broadcast speed
● Hardware issues



  

HTTP accept rate?

● Add
– More servers

– More sockets

– More acceptors



  

Minimizing

● any message flow
● broadcast messages
● auxiliary messages
● subscriber counts
● stats messages



  

Automation

● Up
● Down
● Limits



  

Logging and debugging

● Single error does not matter!
● Statistics matter - watch out for elevated error 

rate!
● Logging may be expensive
● Out-Of-Band logging



  

Tools

● web panels aka dashboards
● CLI tools
● hot code upgrades
● and rollbacks!



  

Message delivery

● reordering
● caching and sending with subscribe with 

message id
● idempotency



  

Mnesia

● Cons
– It's not magic! ;)

● Pros
– Zero configuration

– Blazing fast reads using mnesia:fun/2



  

Unanswered questions

● Removing dead node from cluster
● Network spit
● Limits of scaling for single writer scenario



  

Fault tolerance

● Nodes can and will crash
● Automatic reconnect is easy with static list of 

nodes



  

Talos authors

● Paul Peregud
● Gleb Peregud
● Peter Flis
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