
Copyright Comarch 2013

Erlang in the battlefield

Łukasz Kubica

Telco BSS R&D Department

Cracow Erlang Factory Lite, 2013

Erlang Factory Lite 2013 – Erlang in the battlefield

2 Copyright Comarch 2013

Agenda

• Introduction to the SCM

• Erlang vm and upgrades

• Tracing

• Mnesia

• Final thoughts

• Questions

Erlang Factory Lite 2013 – Erlang in the battlefield

3 Copyright Comarch 2013

The Session Control Module

• A part of the Comarch Billing System

• Does AAA for SIM cards

• Enforces limits (e.g. max data volume per month)

• Can do fraud detection (e.g. IMEI binding for M2M SIMs)

• Performs on-line charging (using a C node)

• Evolved from a real-time Data Processing Server (rtDPS)
developed in C/C++

• On production for a long time - still no downtime

Erlang Factory Lite 2013 – Erlang in the battlefield

4 Copyright Comarch 2013

Agenda

• Introduction to the SCM

• Erlang vm and upgrades

• Tracing

• Mnesia

• Final thoughts

• Questions

Erlang Factory Lite 2013 – Erlang in the battlefield

5 Copyright Comarch 2013

Always build on a rock

• Customer does not care about technology, when a 3rd party component
fails, whole system fails

• A language used for development is less important than a platform (vm,
libraries)
– Ever traced a memory corruption or a leak on a live system?

– Or maybe tried to tune java GC times?
– Not enough or too much logs?

– Your allocator’s heap got fragmented?

• Our experience with Erlang
– The vm is compact and written in plain C

– Great memory stability - no heap fragmentation.

– Traceability
– Good performance (for a vm)

– Simple yet powerful language

– But nothing is perfect ...

Erlang Factory Lite 2013 – Erlang in the battlefield

6 Copyright Comarch 2013

Just give me a little tuning

• Bind your schedulers
– Scheduler context switching is a problem
– Binding schedulers give a big performance boost
– Remember to leave some room for other processes!
– The biggest problem: sched_setaffinity simply does not work on

some virtual configurations, so the binding itself does not work too

• Turn off the load compacting (+scl)
– All your cores are belong to us - so don’t let them sleep
– We (and apparently Basho) have experienced severe and occasional

performance drop which seems to be connected with load compacting
– Processes simply are not homogeneous - think many workers using

one gen_server

• The biggest VM problem - scheduler tuning is hard, and it has
changed in R16.

Erlang Factory Lite 2013 – Erlang in the battlefield

7 Copyright Comarch 2013

Releases and upgrades - the Good

• Hot code loading is great, you can hotfix easily

• Release system is done right - you can prepare upgrade that
will determine what to do when installed. This is a real benefit

• You must be prepared for node restarts in more complex cases.
In HA system you have spare nodes, but during upgrade your
system is not so HA

• In fact upgrades are the most risky thing you can do on a live
HA system

Erlang Factory Lite 2013 – Erlang in the battlefield

8 Copyright Comarch 2013

Releases and upgrades - the Ugly

• Records are NOT done right in erlang
– Say we have myfun(#record{field=X})
– Now let’s add a new field to the record
– And imagine you have N modules with such matchspeces
– And try to run an upgrade ...
– You can tell one version from another, but you code will become a

total mess

• Records versioning should be supported out of the box

• It may seem that atomic loading of multiple modules might do,
but things are more complex

Erlang Factory Lite 2013 – Erlang in the battlefield

9 Copyright Comarch 2013

Releases and upgrades - the Bad

• A real fun begins when you have records and mnesia

• Solution that typically works:
– Upgrade binaries on all nodes
– Make all modules support old and new version and use old by

default
– Switch a param and make all you modules write a new version

and convert from old on read

• The problem is that you will not notice if you binaries support
the new version in a wrong way - until it’s too late

Erlang Factory Lite 2013 – Erlang in the battlefield

10 Copyright Comarch 2013

Agenda

• Introduction to the SCM

• Erlang vm and upgrades

• Tracing

• Mnesia

• Final thoughts

• Questions

Erlang Factory Lite 2013 – Erlang in the battlefield

11 Copyright Comarch 2013

A quick look at erlang tracing

• One of the biggest and most important erlang features – you simply
have to know it

• You can trace both system events (like GC, process scheduling) and
calls

• It is so good that we do not use any debug logs anymore

• Just remember one thing - when you trace calls, trace flags are
bound to module instances
– Beware on-demand code loading, only modules loaded before tracer

setup will be traced
– When you reload a module, you should setup tracing again

• Tracing is useful in two ways
– Obviously, it allows to check what is going wrong
– But it can also be used for system profiling and even monitoring (thanks

to low performance penalty)

Erlang Factory Lite 2013 – Erlang in the battlefield

12 Copyright Comarch 2013

Sequential tracing - a godsend

• Imagine a system which spawns a process per request (not hard, isn’t it
?) with 1500 req/sec

• Once a few minutes you get a request for a certain SIM which
mysteriously fail. You have a callstack in your logs, but it does not help
much

• You can either release new binaries or simply learn sequential tracing
– Find a function with argument allowing you to identify the subject (e.g. IMSI

number)
– Launch dbg or ttb with this function adding a matchspec for your entry

point which activated sequential trace
– For every other function add matchspec which matches only when process

is infected

• We did a simple tool with predefined set of modules/functions. Uses the
ttb module.

Erlang Factory Lite 2013 – Erlang in the battlefield

13 Copyright Comarch 2013

Sequential tracing cont.

• Entry point matchspec
dbg:fun2ms(fun (Args) when hd(Args) == Trace
 set_seq_token(send ,true),

 set_seq_token(’receive’,true),

 set_seq_token(timestamp,true),

 exception_trace()

 end)

• Standard matchspec
dbg:fun2ms(fun (_) when is_seq_trace() ->

 exception_trace()

 end)

Erlang Factory Lite 2013 – Erlang in the battlefield

14 Copyright Comarch 2013

Performance monitoring

• etop is nice, but is process oriented. When you have 1500
processes/sec it is rather hard to use it

• fprof is an offline tool - traces all and have huge performance
penalty

• eprof let’s you profile a live system, but the API takes ONE single
MFA at a time :-(

• However, it’s easy to create your own tool:
– Use call tracing with timestamp and exception_trace - you can

measure time between call and return/exit
– You can enable some GC tracing for even more info
– Then simply aggregate your data (you will have to record some data

per process)
– Add some info from sockets, system, process_info (see etop code

for some undocumented API’s)

Erlang Factory Lite 2013 – Erlang in the battlefield

15 Copyright Comarch 2013

Agenda

• Introduction to the SCM

• Erlang vm and upgrades

• Tracing

• Mnesia

• Final thoughts

• Questions

Erlang Factory Lite 2013 – Erlang in the battlefield

16 Copyright Comarch 2013

Mnesia is cool

• Great functionality out-of-the-box, for free

• The idea is quite simple, and simplicity is good

• Very elegant programming model (funs as activities)

Erlang Factory Lite 2013 – Erlang in the battlefield

17 Copyright Comarch 2013

Mnesia - transactions and efficiency

• Transactions are generally on the slow side (compared to ETS)

• The locking model avoids deadlocks, but if transaction lasts too long, the
sleep strategy takes the toll

• Sometimes, if only one node modifies data, it is better to make a
gen_server plus dirty for shared resources - but you loose rollback

• The dist_auto_connect trap
– Experiment – physically disconnect a replica node during high load
– Watch your system die …
– Why ? To resolve each transaction your system needs a net_setuptime

seconds

• We got rid of transactions almost completely (when you have some
shared resources, you should do everything to have them modified only
locally)

Erlang Factory Lite 2013 – Erlang in the battlefield

18 Copyright Comarch 2013

Mnesia - memory tables

• Performance of memory tables is great, much better then disc
tables

• But you have to be very careful
– You can easily persist table using dump_tables, but it locks table

for read, so it was no-go for us ...
– You can use backup module, which uses snapshot strategy, but

then you have a startup problem if all nodes go down
– For disc tables, mnesia keeps track of longer running node, and
wait_for_tables will timeout if nodes are started out of
sequence

– But not for memory tables, they are simply loaded empty (if there
happens that no other node is present during startup)

– So depending on your strategy, you can either load old state, new
state or stay with empty tables

Erlang Factory Lite 2013 – Erlang in the battlefield

19 Copyright Comarch 2013

Mnesia - indexes and table loading

• Indexes are unusable if you have many records per key
– Index simply holds a list of keys. Every operation on it is a list operation
– When you start a node, index is build up from the ground, so there is lots of

operations on long lists
– Suppose we have 1 million records, which are logically grouped into 100 groups

and you have an index on group_id field

– Such a table will load for ages, much longer then it is safe for a HA system

• Table replication holds a read lock too, so when you start a new node,
performance will suffer

• Partial solution - use frags, but in our case this did not solve our grouping
problem

• So, we did a mnesia customization and we use ETS for index instead of a
list (so basically, ETS index holds an ETS table id instead of a simple list)

Erlang Factory Lite 2013 – Erlang in the battlefield

20 Copyright Comarch 2013

Final thoughts

Erlang is a solid platform to build HA applications on. There are
some gotchas, but nothing can simply be perfect. Considering
the SCM, erlang seems to be a sweet spot - development is
robust, library ecosystem is large and high quality, the VM is
very stable.

You simply feel that it has been done by professionals for

professionals and that’s a lot.

Copyright Comarch 2013

Thank you

Lukasz.Kubica@comarch.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

