Design for the Unexpected: How to Eliminate Traffic Jams

Paul Valckenaers

2013-June-13

An Operating System for the Real World

- OS (kernel) is
 - A resource manager
 - For resources in the computer domain
- Low tolerance for compute overhead but fortunately
- Easy (de)allocation and cheap resources

- Real-world resources:
 - Represent more value
 - Their allocation has serious impact on us
- Non-trivial (de)allocation
 but fortunately
- Significant *compute efforts* are justifiable

An Operating System for the Real World

- How can we design such INFRASTRUCTURE?
- Beyond ICT
- Application-domain-Knowledgeable

• 2 shocking events in my life: *Cyber-apartheid*

– MDA

- Model?-driven Architecture
- Use Erlang/OTP and...
- IoT
 - Internet of Things?
 - Internet talking to things

An Operating System for the Real World

- ICT People are blind
 Cf. previous slides
 - E.g. paper review:

No contribution since already solved while only "programmable" in a tool/environment

Not joking!

- Application domain experts
- Why do they fail?
 - Focus on performance in the application domain
 - Focus on decision making in the application domain

Infrastructure Design = Design for the Unexpected

- The wrong approach:
 - Focus on the decision making aimed at objectives (i.e. performance indicators)
- Why?
 - Arbitrary constraints are unavoidably introduced

- Infrastructure design needs to avoid the abitrary because
 - Only "1-5%" of the full potential is recognised when designing an ICT infrastructure
- Yet, it needs to be knowledgeable in the application domain

- Novel ICT application domains where the application domain experts believe they know best, know less than 5% of the full **potential** before large scale deployment has become a reality
- These experts are only a small fraction of professionals active in the domain
- Some key technology and contribution may still need to come from other domains (analogy: Kursk rescue by Norwegian deep-sea divers)

- Novel ICT application domains where the application domain experts believe they know best, know less then 5% of the full potential before large scale deployment has become a reality
- Working conditions after going full scale are unknown (analogy: fire fighting after first Gulf war)
- These experts don't know best!
- These experts will be beaten by their future selves!

- Novel ICT application domains where the application domain experts believe they know best, know less then 5% of the full **potential** before large scale deployment has become a reality
- Smart traffic
- Smart factories
- Smart grid
- Smart health care
- • •
- Probably still are below this "5%" today (= unconfirmed but plausible)

- Only identify what is (not) relevant
- Don't rely on expectations
- Rely on what is certain
- Or at least be prepared to undo...

- Roads, cars, parking space...
- Trips, commuting, ...
- Decision making ??
- To BE, that's...

- Only identify what is (not) relevant
- Don't rely on expectations
- Rely on what is certain
- Or at least be prepared to undo

- Resource allocation
 - Explicit
 - Mandatory
- For the unexpected
 - Minimized
 - Including state and trajectory requirements

- Only identify what is (not) relevant
- Don't rely on expectations
- Rely on what is certain
- Critical user mass

- Resource types
- Resource instances
- Activity types
- Activity instances
- VIP-Architecture
 - E-Butlers and
 - E-Professionals
- Aggregates/composite
 - Time-varying

- Resource types
- Resource instances
- Activity types
- Activity instances
- VIP-Architecture
 - E-Professionals
 - E-Butlers
 - Erlang is instrumental...

- Road segments
- Crossings
- Car, bus, train, tram (vehicle/seat)
- Bicycle
- People

- Commute routing
- Multi-modal trip

- Resource types
- Resource instances
- Activity types
- Activity instances
- VIP-Architecture
 - E-Butlers and
 - E-Professionals

- Real-world counterpart
- State (track)
- History (trace)
- Agenda (resources)
- Intention (activities)

- Real-world counterpart
- State (track)
- History (trace)
- Agenda (resources)
- Intention (activities)

- Mirror reality
- Coherent and consistent
- Not necessarily in a desired state
- Maintain mirror image whatever happens and cope with the unexpected
- Note: SSOT

- Better forecasts of traffic jams, ...
 - Use state-of-the-art traffic models for "dynamic network loading"
 - Good at "backpropagation"
 - Use "intentions of activity instances" for forward propagation

- Current state-of-theart forecasting
 - Recent state info
 - Historical data
 - Models
 - ...

. . .

- Predict state for the next hour?
- OK for "businessclass"

- Better forecasts of traffic jams, ...
 - Use state-of-the-art traffic models for "dynamic network loading"
 - Good at "backpropagation"
 - Use "intentions of activity instances" for forward propagation

- Intentions ?
 - Results of decision making within activity and resource instances!
 - Design for the unexpected? How?

- Intentions ?
 - Results of decision making within activity and resource instances!
 - Design for the unexpected? How?
 - In the real world decision making mechanisms exist
 - ALWAYS

- Mirror reality
 - Mirror decision making in executable models
 - Efficient code
 - Human, nature, ...
 - Compute-heavy code
 - Virtual execution, much faster than reality, generates candidate solutions and selects the intentions (N.B. SSOT)

- Intentions ?
 - Results of decision making within activity and resource instances!
 - Design for the unexpected? How?
 - In the real world decision making mechanisms exist
 - ALWAYS

- Mirror reality
 - Mirror decision making in executable models
 - Efficient code
 - Human
 - Compute-heavy code
 - Virtual execution of intentions generates short-term forecasts of routing, congestion levels...

- Better forecasting
 - Embed-able in current ITTS, unmanaged, ...
 - Only incremental improvement
 - Superior when an adequate percentage of users contribute to, observe and use forecasts
 - Modeling challenges
 - Butterfly effects

- Eliminate and/or drastically reduce traffic jams
 - Requires managed infrastructure
 E.g. bus lanes used at full capacity
 - Requires all users to follow instructions !!!
 - Eliminates modeling challenges

- Better forecasting
 - Embed-able in current ITTS, unmanaged, ...
 - Only incremental improvement
 - Superior when an adequate percentage of users contribute to, observe and use forecasts
 - Modeling challenges
 - Butterfly effects

- Eliminate and/or drastically reduce traffic jams
 - Requires managed infrastructure
 E.g. bus lanes used at full capacity
 - Requires all users to follow instructions !!!
 - Eliminates modeling challenges

- Eliminate and/or drastically reduce traffic jams
 - Requires managed infrastructure
 E.g. bus lanes used at full capacity
 - Requires all users to follow instructions !!!
 - Eliminates modeling challenges

- Most of the time
 - User follow their own instructions
 - "You are your own boss"
- Except when
 - "Users fail to work things out"
- In which case
 - community policies will arbitrate

- Traffic jams
 - Only remain an issue where capacity is insufficient
 - Policy must handle this
 - Priority on behalf of past behaviour
 - Anti-starvation
 - Pricing
 - ...

- Traffic jams
 - Don't touch/bother uninvolved users
 - Optimize location and time
 - Home, office, ...
- Abolishment of
 - "If I had known this ..."
 - "No good deed goes unpunished"

- Obstacles to abolishment of traffic jams
 - Comfort zones are a major issue
 - Key decision makers may have *selfish* preferences

- The traffic specialist community
 - Designs for the expected
 - insists on a system that has the "*right*" objectives
 - Ignores that the infrastructure can be and should be agnostic concerning objectives

- Obstacles to abolishment of traffic jams
 - Know how to address this exists !

- Privacy
 - Ignorance of hard privacy-enhancing technology
 - Unwilling to develop a privacy-enhancing architecture
 - Unwilling to develop the appropriate middle-of-the-road system.

Conclusion

- A group of West Point graduates were asked to manage the playtime of a kindergarten as a final year assignment.
- The cruel thing is that they were given time to prepare. They planned; they rationally identified objectives; they determined backup and response plans. They then tried to "order" children's play based on rational design principles, and, in consequence, achieved chaos.
- They then observed what teachers do.
- Experienced teachers allow a degree of freedom at the start of the session, then intervene to stabilize desirable patterns and destabilize undesirable ones; and, when they are very clever, they seed the space so that the patterns they want are more likely to emerge.
- OUT-OF-CONTROL performs better ?

 Waldrop, M., "Complexity, the Emerging Science at the Edge of Order and Chaos", VIKING, London, 1992.

COMPLEX

Cause and effect are only coherent in retrospect and do not repeat Pattern management Perspective filters Complex adaptive systems Probe-Sense-Respond

CHAOS

No cause and effect relationships perceivable

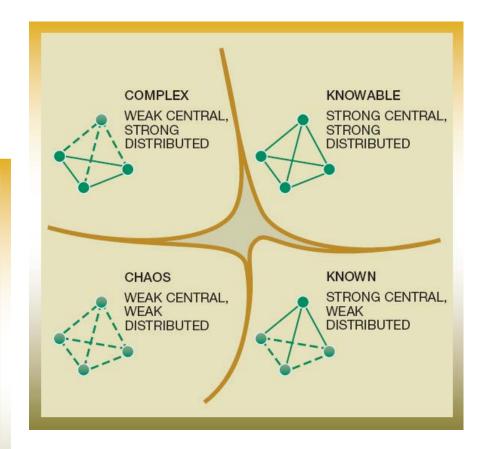
Stability-focused intervention

Enactment tools

Crisis management Act-Sense-Respond

KNOWABLE

Cause and effect separated over time and space Analytical/Reductionist Scenario planning Systems thinking Sense-Analyze-Respond


KNOWN

Cause and effect relations repeatable, perceivable and predictable

Legitimate best practice

Standard operating procedures

Process reengineering Sense-Categorize-Respond

 R. Lewin, Complexity: Life at the Edge of Chaos, University of Chicago Press, Chicago, IL (1999).