
Building WSN with
MQTT, RPi & Arduino

Zvi Avraham

Founder & CEO

ZΛDΛTΛ
zvi@zadata.com

ZΛDΛTΛ © 2013

mailto:zvi@clastr.com

ZΛDΛTΛ © 2013

PubSub (simplified)

ZΛDΛTΛ © 2013

PubSub
millions of Subscribers

ZΛDΛTΛ © 2013

PubSub
+ millions of Publishers

ZΛDΛTΛ © 2013

PubSub supports Broadcast
(1-to-many, FanOut)

ZΛDΛTΛ © 2013

ZΛDΛTΛ © 2013

MQTT Timeline

ZΛDΛTΛ © 2013

1999 –
MQTT

invented

2008 –
MQTT-S

spec
released

2011 – IBM &
Eurotech donated
MQTT to Eclipse

M2M WG

Mar 2013

OASIS MQTT TC

Standardization

"The nice thing about standards is that you
have so many to choose from“

– Andrew Tanenbaum, "Computer Networks"

ZΛDΛTΛ © 2013

MQTT Specs

MQTT v3.1 spec MQTT-S v1.2 spec

ZΛDΛTΛ © 2013

Both MQTT specs combined
only 70 pages!

MQTT v3.1 spec – 42 pages! MQTT-S v1.2 spec – 28 pages!

ZΛDΛTΛ © 2013

MQTT-S vs CoAP
CoAP spec 60 pages longer!

MQTT-S spec – 28 pages! CoAP spec – 88 pages

ZΛDΛTΛ © 2013

Telecom M2M Standards

• Telecom standards like ETSI M2M TC102689
use CoAP for the low-level REST interface for
devices

• Off-course those standards are huge –
hundreds of pages …

ZΛDΛTΛ © 2013

What is MQTT?

• Message Queueing Telemetry Transport

• A lightweight publish/subscribe protocol
standard for traditional networks

• Data-centric

– Separates Data (Payload) from Metadata (Topic)

ZΛDΛTΛ © 2013

MQTT Topics & Wildcards

• Topics are hierarchical (like filesystem path):

– /wsn/sensor/R1/temperature

– /wsn/sensor/R1/pressure

– /wsn/sensor/R2/temperature

– /wsn/sensor/R2/pressure

• A Subscriber can use wildcards in topics:

– /wsn/sensor/+/temperature

– /wsn/sensor/R1/+

– /wsn/sensor/#
ZΛDΛTΛ © 2013

MQTT Message 4-bit code Description

CONNECT 1 Client request to connect to Server

CONNACK 2 Connect Acknowledgment

PUBLISH 3 Publish message

PUBACK 4 Publish Acknowledgment

PUBREC 5 Publish Received (assured delivery part 1)

PUBREL 6 Publish Release (assured delivery part 2)

PUBCOMP 7 Publish Complete (assured delivery part 3)

SUBSCRIBE 8 Client Subscribe request

SUBACK 9 Subscribe Acknowledgment

UNSUBSCRIBE 10 Client Unsubscribe request

UNSUBACK 11 Unsubscribe Acknowledgment

PINGREC 12 PING Request

PINGRESP 13 PING Response

DISCONNECT 14 Client is Disconnecting ZΛDΛTΛ © 2013

ZΛDΛTΛ © 2013

MQTT QoS Levels

QoS
level

Message
delivery

Delivery
semantics

Delivery
Guarantees

0 ≤ 1 At most once Best effort
No guarantees

1 ≥ 1 At least once Guaranteed delivery
Duplicates possible

2 ≡ 1 Exactly once Guaranteed delivery
No duplicates

ZΛDΛTΛ © 2013

Clean Session flag

• When CONNECT-ing to the MQTT Broker the
client can say:

– CleanSession = 1

• Forget all the session settings and subscriptions on
connect and disconnect

• So essentially every reconnect will be like a new session

– CleanSession = 0

• Do not clean

ZΛDΛTΛ © 2013

Retain flag

• If message PUBLISH-ed with Retain flag set to
1 - the MQTT broker will remember it as a last
published value on the topic.

• This is useful for systems with low update
frequency, so new clients will not need to wait
for last known value.

ZΛDΛTΛ © 2013

MQTT over WebSocket

• MQTT for the browsers

• JavaScript API

• Send MQTT packets over WS frames

• Support binary data

• Fallbacks for older browsers w/o WS support

ZΛDΛTΛ © 2013

ZΛDΛTΛ © 2013

MQTT books

IBM MQTT Redbook Chapter 3 – talks about MQTT

ZΛDΛTΛ © 2013

MQTT for Sensor Networks

ZΛDΛTΛ © 2013

-S

ZΛDΛTΛ © 2013

ZΛDΛTΛ © 2013

MQTT vs MQTT-S
MQTT MQTT-S

Transport type Reliable point to
point streams

Unreliable datagrams

Communication TCP/IP Non-IP or UDP

Networking Ethernet, WiFi, 3G ZigBee, Bluetooth, RF

Min message size 2 bytes - PING 1 byte

Max message size ≤ 24MB < 128 bytes (*)

Battery-operated √

Sleeping clients √

QoS: -1 “dumb client” √

Gateway auto-
discovery & fallbacks

√

ZΛDΛTΛ © 2013

MQTT-S Overview

• Designed to be very similar to MQTT.

– i.e. uses MQTT semantics

• Clients are WSN nodes, which communicate
via a gateway to a broker on IP network.

• The gateway may just translate messages
between MQTT-S and MQTT, so the broker is a
normal MQTT broker.

• Designed to work on any WSN
architecture/transport.

ZΛDΛTΛ © 2013

“Simple Client” QoS = -1

QoS
level

Message
delivery

Delivery
semantics

Delivery
Guarantees

-1* ≤ 1 At most once No connection setup
 Transmit only

Best effort – no guarantees
 (*) - MQTT-S only

0 ≤ 1 At most once Best effort
No guarantees

1 ≥ 1 At least once Guaranteed delivery
Duplicates possible

2 ≡ 1 Exactly once Guaranteed delivery
No duplicates

ZΛDΛTΛ © 2013

MQTT-S Gateway ↔ MQTT Broker

ZΛDΛTΛ © 2013

Mesh communication protocol for

Wireless Sensor Networks

ZΛDΛTΛ © 2013

Many different profiles

ZΛDΛTΛ © 2013

Types of ZigBee devices

• 1 Coordinator

• 1+ Routers

• 1+ End devices

• You change device type

by loading corresponding

firmware
ZΛDΛTΛ © 2013

ZigBee modes

• Direct mode

– Full-duplex point-to-point communication

• AT Modem mode

– used to get/set registers or device info

• API mode

– most advanced mode – many tx/rcv frame types

– Can send AT modem commands too

ZΛDΛTΛ © 2013

BWSN: book + kit

Book Sparkfun kit ~ $115

ZΛDΛTΛ © 2013

ZΛDΛTΛ © 2013

ZΛDΛTΛ © 2013

ZΛDΛTΛ © 2013

Arduino, RPi, BeagleBone specs

ZΛDΛTΛ © 2013

http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html

http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html
http://digitaldiner.blogspot.co.il/2012/10/arduino-uno-vs-beaglebone-vs-raspberry.html

ZΛDΛTΛ © 2013

GATEWAY FOR M2M & IOT
MQTT-S over ZigBee Gateway for M2M and Internet-of-Things

ZΛDΛTΛ © 2013

MQTT-S Gateway & MQTT Broker

ZΛDΛTΛ © 2013

ZΛDΛTΛ © 2013

WSN node = Arduino + XBee

ZΛDΛTΛ © 2013

 WSN with 3 nodes

ZΛDΛTΛ © 2013

ZΛDΛTΛ © 2013

MQTT-S Gateway on Raspberry Pi

ZΛDΛTΛ © 2013

MQTT-S Gateway on BeagleBoard

 NIKE+

ZΛDΛTΛ © 2013

WHY?

ZΛDΛTΛ © 2013

Why Erlang/OTP?

• Ideal platform for Large-Scale (C1M to C10M)
PubSub systems

• Ideal for implementation of Gateways & Proxies

• Easy ZigBee, MQTT & MQTT-S protocol
handling using bit-syntax & binary
comprehensions

• Very easy to port to ARM-based Embedded
Linux systems (not only RPi &
BeagleBone/Board, but also professional SBCs)

ZΛDΛTΛ © 2013

MQTT easy to parse with BitSyntax

ZΛDΛTΛ © 2013

MQTT Broker design

• 1 Cowboy process per MQTT or Websocket client

– Receives, sends and handles MQTT protocol frames using
bit-syntax

• 1 gen_server/proces per MQTT Subscriber

– managing MQTT client session

– may survive TCP socket disconnects (according to QoS)

– If client disconnected - queue messages (according to QoS)

• 1 gen_server/process + 1 ETS table per Topic

– manages list of subscribers per topic

– broadcast messages to subscriber processes

MQTT Broker design (cont.)

• Subscribers Manager gen_server

– Manages table of subscribers

– Creating new subscriber

– Sending one-to-one messages

• Topics Manager gen_server

– Manages table of topics

– Publish to topic (i.e. broadcast to all topic subsribers)

Scaling - Networking

• Tuning Linux TCP Stack – C1M (no C10M) Problem

• SYN flood – SYN cookies

– accumulation of half-open sockets

– being behind load balancer solves this

• Broadcast T-put problem

– Sending pings alone to millions of clients requires a lot of
bandwidth

• Do SSL termination on Load Balancer

• Poor man QoS:

– Separate ports for different protocols

Scaling – Erlang/OTP
• Sending messages as binaries

– so it will be 0-copy

– Especially useful for broadcast

• Broadcasting messages at low priority

– so it will not interfere with accepting new clients

• Writing our own broadcast timer code

– since built-in timers do not scale to millions of
processes

• Tricks to fast spawn of new gen_servers

– i.e. spawn gen_server per new subscriber or topic

Scaling – Erlang/OTP (cont.)
• Moving data flow from Erlang built-in

Distribution to ØMQ

• Erlang built-in distribution still used for
control-flow and cluster management

Open-Source Erlang libs we use:

• Cowboy – a high-performance embeddable
webserver

• sl – for communication with serial port

• binpp – for prety-printing binary dumps

• lager – for logging

• erlzmq2 – erlang binding for ØMQ

• + many-many others

ZΛDΛTΛ © 2013

DEMO
Demo moved to Lightning talks after 18:00

ZΛDΛTΛ © 2013

Thanks! Questions?

Contact:

Zvi Avraham

zvi@zadata.com

@nivertech

ZΛDΛTΛ © 2013

mailto:zvi@zadata.com

