
ADDRESSING
NETWORK CONGESTION

IN RIAK CLUSTERS
Steve Vinoski

Architecture Group, Basho Technologies
Cambridge, MA USA
http://basho.com

@stevevinoski
vinoski@ieee.org

http://steve.vinoski.net/

1Friday, June 14, 13

http://basho.com
http://basho.com
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org
http://steve.vinoski.net
http://steve.vinoski.net


2Friday, June 14, 13



Riak

3Friday, June 14, 13



Riak

• A distributed

3Friday, June 14, 13



Riak

• A distributed highly available

3Friday, June 14, 13



Riak

• A distributed highly available eventually consistent

3Friday, June 14, 13



Riak

• A distributed highly available eventually consistent
highly scalable

3Friday, June 14, 13



Riak

• A distributed highly available eventually consistent
highly scalable open source

3Friday, June 14, 13



Riak

• A distributed highly available eventually consistent
highly scalable open source key-value database

3Friday, June 14, 13



Riak

• A distributed highly available eventually consistent
highly scalable open source key-value database
written primarily in Erlang.

3Friday, June 14, 13



Riak
• Modeled after Amazon Dynamo

• see Andy Gross's "Dynamo, Five Years Later" for details 
https://speakerdeck.com/argv0/dynamo-five-years-later

• see annotated version of Dynamo paper with comparisons 
to Riak: http://docs.basho.com/riak/latest/references/
dynamo/

• Also provides MapReduce, secondary indexes, and full-text 
search

• Built for operational ease

4Friday, June 14, 13

https://speakerdeck.com/argv0/dynamo-five-years-later
https://speakerdeck.com/argv0/dynamo-five-years-later
http://docs.basho.com/riak/latest/references/dynamo/
http://docs.basho.com/riak/latest/references/dynamo/
http://docs.basho.com/riak/latest/references/dynamo/
http://docs.basho.com/riak/latest/references/dynamo/


Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

5Friday, June 14, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/


Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

6Friday, June 14, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/


Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

7Friday, June 14, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/


Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

8Friday, June 14, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/


Riak Architecture

Erlang

Riak Core

Bitcask eLevelDB Memory Multi

Riak Pipe

Riak API

 Riak PB

Riak Clients

Erlang

Java

Ruby

C/C++

Python

.NET

PHP

Go

Nodejs

More..

Yokozuna

Webmachine HTTP

Riak KV

Erlang parts

image courtesy of Eric Redmond, "A Little Riak Book" https://github.com/coderoshi/little_riak_book/

9Friday, June 14, 13

https://github.com/coderoshi/little_riak_book/
https://github.com/coderoshi/little_riak_book/


Riak Cluster

node 0

node 1

node 2

node 3

10Friday, June 14, 13



Distributing Data

• Riak uses consistent hashing to spread 
data across the cluster

• Minimizes remapping of keys when 
number of nodes changes

• Spreads data evenly and minimizes 
hotspots

node 0

node 1

node 2

node 3

11Friday, June 14, 13



Consistent Hashing

node 0

node 1

node 2

node 3

12Friday, June 14, 13



Consistent Hashing

• Riak uses SHA-1 as a hash function node 0

node 1

node 2

node 3

12Friday, June 14, 13



Consistent Hashing

• Riak uses SHA-1 as a hash function

• Treats its 160-bit value space as a ring

node 0

node 1

node 2

node 3

12Friday, June 14, 13



Consistent Hashing

• Riak uses SHA-1 as a hash function

• Treats its 160-bit value space as a ring

• Divides the ring into partitions called "virtual 
nodes" or vnodes (default 64)

node 0

node 1

node 2

node 3

12Friday, June 14, 13



Consistent Hashing

• Riak uses SHA-1 as a hash function

• Treats its 160-bit value space as a ring

• Divides the ring into partitions called "virtual 
nodes" or vnodes (default 64)

• Each vnode claims a portion of the ring space

node 0

node 1

node 2

node 3

12Friday, June 14, 13



Consistent Hashing

• Riak uses SHA-1 as a hash function

• Treats its 160-bit value space as a ring

• Divides the ring into partitions called "virtual 
nodes" or vnodes (default 64)

• Each vnode claims a portion of the ring space

• Each physical node in the cluster hosts 
multiple vnodes

node 0

node 1

node 2

node 3

12Friday, June 14, 13



Hash Ring

2160 0

2160/4

2160/2

3*2160/4

node 0

node 1

node 2

node 3

13Friday, June 14, 13



Hash Ring

node 0

node 1

node 2

node 3

14Friday, June 14, 13



Hash Ring

node 0

node 1

node 2

node 3

bucket key

14Friday, June 14, 13



N/R/W Values

15Friday, June 14, 13



N/R/W Values

• N = number of replicas to store (default 3)

15Friday, June 14, 13



N/R/W Values

• N = number of replicas to store (default 3)

• R = read quorum = number of replica responses needed 
for a successful read (default N/2+1)

15Friday, June 14, 13



N/R/W Values

• N = number of replicas to store (default 3)

• R = read quorum = number of replica responses needed 
for a successful read (default N/2+1)

• W = write quorum = number of replica responses 
needed for a successful write (default N/2+1)

15Friday, June 14, 13



N/R/W Values

node 0

node 1

node 2

node 3

16Friday, June 14, 13



Riak TCP Traffic

17Friday, June 14, 13



Riak TCP Traffic
• Client requests: made to any node in the ring

17Friday, June 14, 13



Riak TCP Traffic
• Client requests: made to any node in the ring

• Coordination: node receiving client request coordinates the operation 
across the owning replicas

17Friday, June 14, 13



Riak TCP Traffic
• Client requests: made to any node in the ring

• Coordination: node receiving client request coordinates the operation 
across the owning replicas

• Gossip: Riak nodes share ring state via a gossip protocol

17Friday, June 14, 13



Riak TCP Traffic
• Client requests: made to any node in the ring

• Coordination: node receiving client request coordinates the operation 
across the owning replicas

• Gossip: Riak nodes share ring state via a gossip protocol

• Active Anti-Entropy: nodes actively verify and repair data consistency 
across the ring (new with Riak 1.3)

17Friday, June 14, 13



Riak TCP Traffic
• Client requests: made to any node in the ring

• Coordination: node receiving client request coordinates the operation 
across the owning replicas

• Gossip: Riak nodes share ring state via a gossip protocol

• Active Anti-Entropy: nodes actively verify and repair data consistency 
across the ring (new with Riak 1.3)

• Erlang: distributed Erlang nodes form a full mesh and do periodic node 
availability checks

17Friday, June 14, 13



Riak TCP Traffic
• Client requests: made to any node in the ring

• Coordination: node receiving client request coordinates the operation 
across the owning replicas

• Gossip: Riak nodes share ring state via a gossip protocol

• Active Anti-Entropy: nodes actively verify and repair data consistency 
across the ring (new with Riak 1.3)

• Erlang: distributed Erlang nodes form a full mesh and do periodic node 
availability checks

• Multi-Data Center Replication: sync data across multiple clusters (part 
of Riak Enterprise, see http://basho.com/riak-enterprise/)

17Friday, June 14, 13

http://basho.com/riak-enterprise/
http://basho.com/riak-enterprise/


Riak TCP Traffic
• Client requests: made to any node in the ring

• Coordination: node receiving client request coordinates the operation 
across the owning replicas

• Gossip: Riak nodes share ring state via a gossip protocol

• Active Anti-Entropy: nodes actively verify and repair data consistency 
across the ring (new with Riak 1.3)

• Erlang: distributed Erlang nodes form a full mesh and do periodic node 
availability checks

• Multi-Data Center Replication: sync data across multiple clusters (part 
of Riak Enterprise, see http://basho.com/riak-enterprise/)

• Handoff

17Friday, June 14, 13

http://basho.com/riak-enterprise/
http://basho.com/riak-enterprise/


Handoff

18Friday, June 14, 13



Handoff

• If primary vnode is unavailable, request goes to a 
fallback vnode

18Friday, June 14, 13



Handoff

• If primary vnode is unavailable, request goes to a 
fallback vnode

• Fallback vnode holds data on behalf of the unavailable 
primary

18Friday, June 14, 13



Handoff

• If primary vnode is unavailable, request goes to a 
fallback vnode

• Fallback vnode holds data on behalf of the unavailable 
primary

• Fallback vnode watches for return of primary vnode

18Friday, June 14, 13



Handoff

• If primary vnode is unavailable, request goes to a 
fallback vnode

• Fallback vnode holds data on behalf of the unavailable 
primary

• Fallback vnode watches for return of primary vnode

• When the primary returns, the fallback performs a 
handoff to transfer data to it

18Friday, June 14, 13



N/R/W Values

19Friday, June 14, 13



Cluster Throughput Under Extreme Load

20Friday, June 14, 13



Latency Of Puts Under Extreme Load

21Friday, June 14, 13



Let's Scale

22Friday, June 14, 13



Let's Scale

• Scaling up/down in Riak means adding/removing nodes

22Friday, June 14, 13



Let's Scale

• Scaling up/down in Riak means adding/removing nodes

• Adding: new nodes claim ring partitions

22Friday, June 14, 13



Let's Scale

• Scaling up/down in Riak means adding/removing nodes

• Adding: new nodes claim ring partitions

• Removing: existing nodes reclaim ring partitions from 
leaving nodes

22Friday, June 14, 13



Let's Scale

• Scaling up/down in Riak means adding/removing nodes

• Adding: new nodes claim ring partitions

• Removing: existing nodes reclaim ring partitions from 
leaving nodes

• Handoff occurs to move data between nodes

22Friday, June 14, 13



Throughput With Node Join/Leave

23Friday, June 14, 13



Throughput With Node Join/Leave

23Friday, June 14, 13



Throughput With Node Join/Leave

• Latencies also increase

23Friday, June 14, 13



Throughput With Node Join/Leave

• Latencies also increase
• Increases in I/O, CPU, network congestion

23Friday, June 14, 13



Throughput With Node Join/Leave

• Latencies also increase
• Increases in I/O, CPU, network congestion
• Potential for TCP incast problems

23Friday, June 14, 13



Throughput With Node Join/Leave

• Latencies also increase
• Increases in I/O, CPU, network congestion
• Potential for TCP incast problems
• Potential for client timeouts

23Friday, June 14, 13



TCP Incast

24Friday, June 14, 13



TCP Incast

• Affects many-to-one operations in datacenters

24Friday, June 14, 13



TCP Incast

• Affects many-to-one operations in datacenters

• In microbursts, senders overrun switch buffers, packets 
are dropped, senders back off and slow down

24Friday, June 14, 13



TCP Incast

• Affects many-to-one operations in datacenters

• In microbursts, senders overrun switch buffers, packets 
are dropped, senders back off and slow down

• Result is significant throughput collapse

24Friday, June 14, 13



TCP Incast

• Affects many-to-one operations in datacenters

• In microbursts, senders overrun switch buffers, packets 
are dropped, senders back off and slow down

• Result is significant throughput collapse

• Affects systems like Riak because multiple vnodes (the 
many) often send messages nearly simultaneously to a 
coordinator (the one)

24Friday, June 14, 13



LEDBAT

25Friday, June 14, 13



LEDBAT
• Low Extra Delay Background Transport (RFC 6817, 

experimental, Dec. 2012)

25Friday, June 14, 13



LEDBAT
• Low Extra Delay Background Transport (RFC 6817, 

experimental, Dec. 2012)

• Quick reacting delay-based congestion control

25Friday, June 14, 13



LEDBAT
• Low Extra Delay Background Transport (RFC 6817, 

experimental, Dec. 2012)

• Quick reacting delay-based congestion control

• Uses one-way delay measurements to estimate data 
path queuing

25Friday, June 14, 13



LEDBAT
• Low Extra Delay Background Transport (RFC 6817, 

experimental, Dec. 2012)

• Quick reacting delay-based congestion control

• Uses one-way delay measurements to estimate data 
path queuing

• Adds low extra queuing delay to minimize interference 
with other flows

25Friday, June 14, 13



LEDBAT
• Low Extra Delay Background Transport (RFC 6817, 

experimental, Dec. 2012)

• Quick reacting delay-based congestion control

• Uses one-way delay measurements to estimate data 
path queuing

• Adds low extra queuing delay to minimize interference 
with other flows

• Suitable for "background" tasks like bulk data transfer

25Friday, June 14, 13



Micro Transport Protocol (uTP)

26Friday, June 14, 13



Micro Transport Protocol (uTP)

• LEDBAT congestion control, precedes the RFC

26Friday, June 14, 13



Micro Transport Protocol (uTP)

• LEDBAT congestion control, precedes the RFC

• Created in Internet2 research, implemented by Plicto, 
acquired by Bittorrent in 2006

26Friday, June 14, 13



Micro Transport Protocol (uTP)

• LEDBAT congestion control, precedes the RFC

• Created in Internet2 research, implemented by Plicto, 
acquired by Bittorrent in 2006

• Bittorrent has been using uTP since 2009

26Friday, June 14, 13



Micro Transport Protocol (uTP)

• LEDBAT congestion control, precedes the RFC

• Created in Internet2 research, implemented by Plicto, 
acquired by Bittorrent in 2006

• Bittorrent has been using uTP since 2009

• Their C++ library implementation is on github:
https://github.com/bittorrent/libutp

26Friday, June 14, 13

https://github.com/bittorrent/libutp
https://github.com/bittorrent/libutp


Integrating Libutp Into Riak

27Friday, June 14, 13



Integrating Libutp Into Riak

Riak

27Friday, June 14, 13



Integrating Libutp Into Riak

Riak

Erlang/OTP

27Friday, June 14, 13



Integrating Libutp Into Riak

Riak

Erlang/OTP
Erlang

27Friday, June 14, 13



Integrating Libutp Into Riak

Riak

Erlang/OTP

inet_drv
TCP, UDP, SCTP

Erlang

27Friday, June 14, 13



Integrating Libutp Into Riak

Riak

Erlang/OTP

inet_drv
TCP, UDP, SCTP

Erlang
drivers

Erlang

27Friday, June 14, 13



Integrating Libutp Into Riak

Riak

Erlang/OTP

inet_drv
TCP, UDP, SCTP

Erlang
drivers

Erlang

C/C++

27Friday, June 14, 13



Integrating Libutp Into Riak

Riak

Erlang/OTP

gen_utpinet_drv
TCP, UDP, SCTP

Erlang
drivers

Erlang

C/C++

27Friday, June 14, 13



Gen_utp

• Erlang interface matches 
standard library gen_tcp

• gen_utp module wraps 
access to the driver

• C++ driver code wraps 
libutp

• C++ driver also manages 
underlying UDP sockets

gen_utp

C++ driver code

libutp

UDP sockets

28Friday, June 14, 13



Gen_utp Features

29Friday, June 14, 13



Gen_utp Features
• Connection-oriented protocol

29Friday, June 14, 13



Gen_utp Features
• Connection-oriented protocol

• uTP sockets represented via Erlang ports, same as for 
TCP and UDP

29Friday, June 14, 13



Gen_utp Features
• Connection-oriented protocol

• uTP sockets represented via Erlang ports, same as for 
TCP and UDP

• Active modes: false, true, once

29Friday, June 14, 13



Gen_utp Features
• Connection-oriented protocol

• uTP sockets represented via Erlang ports, same as for 
TCP and UDP

• Active modes: false, true, once

• Binary or list data delivery

29Friday, June 14, 13



Gen_utp Features
• Connection-oriented protocol

• uTP sockets represented via Erlang ports, same as for 
TCP and UDP

• Active modes: false, true, once

• Binary or list data delivery

• Supports sending iolists

29Friday, June 14, 13



Gen_utp Features
• Connection-oriented protocol

• uTP sockets represented via Erlang ports, same as for 
TCP and UDP

• Active modes: false, true, once

• Binary or list data delivery

• Supports sending iolists

• IPv4 and IPv6

29Friday, June 14, 13



Gen_utp Features

30Friday, June 14, 13



Gen_utp Features

• Packet option (raw, 0, 1, 2, 4)

30Friday, June 14, 13



Gen_utp Features

• Packet option (raw, 0, 1, 2, 4)

• Message headers (first N bytes of each message 
delivered as a list)

30Friday, June 14, 13



Gen_utp Features

• Packet option (raw, 0, 1, 2, 4)

• Message headers (first N bytes of each message 
delivered as a list)

• Network interface binding

30Friday, June 14, 13



Gen_utp Features

• Packet option (raw, 0, 1, 2, 4)

• Message headers (first N bytes of each message 
delivered as a list)

• Network interface binding

• Attach to already-open UDP socket file descriptor

30Friday, June 14, 13



Gen_utp Functions

31Friday, June 14, 13



Gen_utp Functions
• listen, accept, async_accept

31Friday, June 14, 13



Gen_utp Functions
• listen, accept, async_accept

• connect

31Friday, June 14, 13



Gen_utp Functions
• listen, accept, async_accept

• connect

• send, recv

31Friday, June 14, 13



Gen_utp Functions
• listen, accept, async_accept

• connect

• send, recv

• close

31Friday, June 14, 13



Gen_utp Functions
• listen, accept, async_accept

• connect

• send, recv

• close

• sockname, peername, port

31Friday, June 14, 13



Gen_utp Functions
• listen, accept, async_accept

• connect

• send, recv

• close

• sockname, peername, port

• setopts, getopts

31Friday, June 14, 13



Gen_utp Functions
• listen, accept, async_accept

• connect

• send, recv

• close

• sockname, peername, port

• setopts, getopts

• controlling_process

31Friday, June 14, 13



Gen_utp Example

32Friday, June 14, 13



Gen_utp Example

33Friday, June 14, 13



Gen_utp Example

34Friday, June 14, 13



Gen_utp Example

35Friday, June 14, 13



Gen_utp Example

36Friday, June 14, 13



Gen_utp Example

37Friday, June 14, 13



Gen_utp Example

38Friday, June 14, 13



Gen_utp Example

39Friday, June 14, 13



Gen_utp Example

40Friday, June 14, 13



Gen_utp Internals

• libutp is a C++ library, so the Erlang driver is also C++

• libutp works via callbacks

• libutp implements the uTP protocol, you have to supply 
all socket handling

• Sockets are UDP, libutp adds the protocol reliability

41Friday, June 14, 13



Gen_utp Internals

• Master branch has a C++ class hierarchy of Handlers

• Handlers implement socket handling, uTP handling, and 
Erlang port handling

• Development branch (not yet working) breaks these into 
parallel hierarchies of Handlers and Ports

42Friday, June 14, 13



Handler Classes

43Friday, June 14, 13



Handler Classes

• SocketHandler: handles UDP sockets

43Friday, June 14, 13



Handler Classes

• SocketHandler: handles UDP sockets

• a listener uses a SocketHandler

43Friday, June 14, 13



Handler Classes

• SocketHandler: handles UDP sockets

• a listener uses a SocketHandler

• UtpHandler: handles libutp callbacks

43Friday, June 14, 13



Handler Classes

• SocketHandler: handles UDP sockets

• a listener uses a SocketHandler

• UtpHandler: handles libutp callbacks

• derived from SocketHandler

43Friday, June 14, 13



Handling Events

• UDP sockets are registered in the Erlang runtime's 
polling set

• Erlang runtime calls SocketHandlers when sockets have 
input

• libutp also has a timeout check that the uTP driver calls 
every 10ms

44Friday, June 14, 13



Port Classes

45Friday, June 14, 13



Port Classes
• DrvPort: abstract base class for all Port classes

45Friday, June 14, 13



Port Classes
• DrvPort: abstract base class for all Port classes

• MainPort: implements initial port into uTP driver

45Friday, June 14, 13



Port Classes
• DrvPort: abstract base class for all Port classes

• MainPort: implements initial port into uTP driver

• implements listen and connect calls

45Friday, June 14, 13



Port Classes
• DrvPort: abstract base class for all Port classes

• MainPort: implements initial port into uTP driver

• implements listen and connect calls

• SocketPort: base class for ports dealing with SocketHandlers

45Friday, June 14, 13



Port Classes
• DrvPort: abstract base class for all Port classes

• MainPort: implements initial port into uTP driver

• implements listen and connect calls

• SocketPort: base class for ports dealing with SocketHandlers

• ListenPort: port returned from listen calls

45Friday, June 14, 13



Port Classes
• DrvPort: abstract base class for all Port classes

• MainPort: implements initial port into uTP driver

• implements listen and connect calls

• SocketPort: base class for ports dealing with SocketHandlers

• ListenPort: port returned from listen calls

• UtpPort: base class for ports dealing with UtpHandlers

45Friday, June 14, 13



Port Classes
• DrvPort: abstract base class for all Port classes

• MainPort: implements initial port into uTP driver

• implements listen and connect calls

• SocketPort: base class for ports dealing with SocketHandlers

• ListenPort: port returned from listen calls

• UtpPort: base class for ports dealing with UtpHandlers

• AcceptPort: port returned from accept calls

45Friday, June 14, 13



Port Classes
• DrvPort: abstract base class for all Port classes

• MainPort: implements initial port into uTP driver

• implements listen and connect calls

• SocketPort: base class for ports dealing with SocketHandlers

• ListenPort: port returned from listen calls

• UtpPort: base class for ports dealing with UtpHandlers

• AcceptPort: port returned from accept calls

• ConnectPort: port returned from connect calls

45Friday, June 14, 13



Implementing Accept

46Friday, June 14, 13



Implementing Accept

• A uTP client "connects" to a uTP listener, but it's really 
connectionless UDP underneath

46Friday, June 14, 13



Implementing Accept

• A uTP client "connects" to a uTP listener, but it's really 
connectionless UDP underneath

• TCP accept means "give me a new socket connected to 
that client", and we want the same semantics

46Friday, June 14, 13



Implementing Accept

47Friday, June 14, 13



Implementing Accept
• For incoming connection requests:

47Friday, June 14, 13



Implementing Accept
• For incoming connection requests:

• open a new accept socket sharing the listen port (using 
SO_REUSEADDR or SO_REUSEPORT)

47Friday, June 14, 13



Implementing Accept
• For incoming connection requests:

• open a new accept socket sharing the listen port (using 
SO_REUSEADDR or SO_REUSEPORT)

• connect(2) the UDP accept socket to the client (yes, 
connect works for UDP too)

47Friday, June 14, 13



Implementing Accept
• For incoming connection requests:

• open a new accept socket sharing the listen port (using 
SO_REUSEADDR or SO_REUSEPORT)

• connect(2) the UDP accept socket to the client (yes, 
connect works for UDP too)

• any subsequent traffic from that client is seen only by the 
accept socket

47Friday, June 14, 13



Implementing Accept
• For incoming connection requests:

• open a new accept socket sharing the listen port (using 
SO_REUSEADDR or SO_REUSEPORT)

• connect(2) the UDP accept socket to the client (yes, 
connect works for UDP too)

• any subsequent traffic from that client is seen only by the 
accept socket

• all sends on the accept socket go only to that client (i.e., 
using send vs. sendto)

47Friday, June 14, 13



Implementing Accept

• Unlike inet_drv, the uTP driver uses the driver queue for 
reads, not writes

• Implementing {active,false} or {active,once} for TCP just 
means deselecting the socket

• uTP driver always has to read all incoming messages to 
check if they're uTP messages, so it never deselects

• driver queue stores read messages not yet delivered 
up through gen_utp

48Friday, June 14, 13



Shortcomings
• No good way to implement a listen queue

• uTP client will just timeout if nobody's accepting

• uTP is slow when closing a socket, seems to want to 
exchange a bunch of messages

• libutp is not thread-safe, all access must be serialized

• Getting lifetimes of sockets, Erlang ports, and C++ handler 
instances right is hard

• hoping the Handler/Port split will help

49Friday, June 14, 13



Gen_utp Testing

• Definitely a work in progress!

• Integrated with Riak some months ago on a branch

• successfully performed small-scale handoff

• but no large-scale Riak testing yet

50Friday, June 14, 13



Gen_utp Testing

51Friday, June 14, 13



Gen_utp Testing

• With direct Ethernet connection between two systems:

51Friday, June 14, 13



Gen_utp Testing

• With direct Ethernet connection between two systems:

• same throughput as gen_tcp at 10baseT

51Friday, June 14, 13



Gen_utp Testing

• With direct Ethernet connection between two systems:

• same throughput as gen_tcp at 10baseT

• same throughput as gen_tcp at 100baseT

51Friday, June 14, 13



Gen_utp Testing

• With direct Ethernet connection between two systems:

• same throughput as gen_tcp at 10baseT

• same throughput as gen_tcp at 100baseT

• 2x slower than gen_tcp at 1000baseT

51Friday, June 14, 13



Gen_utp Testing

• With direct Ethernet connection between two systems:

• same throughput as gen_tcp at 10baseT

• same throughput as gen_tcp at 100baseT

• 2x slower than gen_tcp at 1000baseT

• gen_utp shows higher CPU in all cases, most likely due 
to copying forced by libutp callback interface

51Friday, June 14, 13



Gen_utp Testing

52Friday, June 14, 13



Gen_utp Testing

• Lower throughput on fast networks could be a 
showstopper, since datacenter LANs are usually fast

52Friday, June 14, 13



Gen_utp Testing

• Lower throughput on fast networks could be a 
showstopper, since datacenter LANs are usually fast

• Always deferring to TCP flows might not always be 
desirable, for example:

52Friday, June 14, 13



Gen_utp Testing

• Lower throughput on fast networks could be a 
showstopper, since datacenter LANs are usually fast

• Always deferring to TCP flows might not always be 
desirable, for example:

• when adding nodes to scale a cluster that's struggling 
to keep up with load

52Friday, June 14, 13



Gen_utp Testing

• Lower throughput on fast networks could be a 
showstopper, since datacenter LANs are usually fast

• Always deferring to TCP flows might not always be 
desirable, for example:

• when adding nodes to scale a cluster that's struggling 
to keep up with load

• you want data transfer to happen as quickly as 
possible so the new nodes help manage load

52Friday, June 14, 13



Current Status

• gen_utp available at
https://github.com/basho-labs/gen_utp

• It mostly works but:

• recent updates for Erlang R16B introduced bugs on 
master related to binary vs. list delivery

• current development branch (Handler/Port split) still 
needs work

53Friday, June 14, 13

https://github.com/basho-labs/gen_utp
https://github.com/basho-labs/gen_utp


Next Steps

54Friday, June 14, 13



Next Steps

54Friday, June 14, 13



Next Steps

• Next step: testing on a Riak cluster under load

54Friday, June 14, 13



Next Steps

• Next step: testing on a Riak cluster under load

• Redesign the driver to work with Erlang's prim_inet layer

54Friday, June 14, 13



Next Steps

• Next step: testing on a Riak cluster under load

• Redesign the driver to work with Erlang's prim_inet layer

• this should allow SSL to work over uTP

54Friday, June 14, 13



Next Steps

• Next step: testing on a Riak cluster under load

• Redesign the driver to work with Erlang's prim_inet layer

• this should allow SSL to work over uTP

• If it doesn't help with congestion, consider using it for 
Riak Enterprise multi-datacenter syncing over WANs

54Friday, June 14, 13



Related Work

55Friday, June 14, 13



Related Work

• Jesper Louis Andersen (@jlouis) wrote a partial pure 
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp

55Friday, June 14, 13

https://github.com/jlouis/erlang-utp
https://github.com/jlouis/erlang-utp


Related Work

• Jesper Louis Andersen (@jlouis) wrote a partial pure 
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp

• He basically reverse engineered libutp

55Friday, June 14, 13

https://github.com/jlouis/erlang-utp
https://github.com/jlouis/erlang-utp


Related Work

• Jesper Louis Andersen (@jlouis) wrote a partial pure 
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp

• He basically reverse engineered libutp

• I didn't use it because I thought libutp would make 
things easier, and because I can layer SSL over a driver

55Friday, June 14, 13

https://github.com/jlouis/erlang-utp
https://github.com/jlouis/erlang-utp


Related Work

• Jesper Louis Andersen (@jlouis) wrote a partial pure 
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp

• He basically reverse engineered libutp

• I didn't use it because I thought libutp would make 
things easier, and because I can layer SSL over a driver

• He's stopped work on it but is willing to entertain pull 
requests :)

55Friday, June 14, 13

https://github.com/jlouis/erlang-utp
https://github.com/jlouis/erlang-utp


THANKS

http://basho.com
@stevevinoski

56Friday, June 14, 13

http://basho.com
http://basho.com

