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• A distributed highly available eventually consistent
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Riak

• A distributed highly available eventually consistent
highly scalable open source key-value database
written primarily in Erlang.

3Friday, June 14, 13



Riak
• Modeled after Amazon Dynamo

• see Andy Gross's "Dynamo, Five Years Later" for details 
https://speakerdeck.com/argv0/dynamo-five-years-later

• see annotated version of Dynamo paper with comparisons 
to Riak: http://docs.basho.com/riak/latest/references/
dynamo/

• Also provides MapReduce, secondary indexes, and full-text 
search

• Built for operational ease
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Riak Cluster
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Distributing Data

• Riak uses consistent hashing to spread 
data across the cluster

• Minimizes remapping of keys when 
number of nodes changes

• Spreads data evenly and minimizes 
hotspots
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Consistent Hashing

• Riak uses SHA-1 as a hash function

• Treats its 160-bit value space as a ring

• Divides the ring into partitions called "virtual 
nodes" or vnodes (default 64)

• Each vnode claims a portion of the ring space

• Each physical node in the cluster hosts 
multiple vnodes

node 0

node 1

node 2

node 3

12Friday, June 14, 13



Hash Ring
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Hash Ring
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N/R/W Values

• N = number of replicas to store (default 3)

• R = read quorum = number of replica responses needed 
for a successful read (default N/2+1)

• W = write quorum = number of replica responses 
needed for a successful write (default N/2+1)
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N/R/W Values

node 0

node 1

node 2

node 3

16Friday, June 14, 13



Riak TCP Traffic
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• Coordination: node receiving client request coordinates the operation 
across the owning replicas

• Gossip: Riak nodes share ring state via a gossip protocol

• Active Anti-Entropy: nodes actively verify and repair data consistency 
across the ring (new with Riak 1.3)

• Erlang: distributed Erlang nodes form a full mesh and do periodic node 
availability checks

• Multi-Data Center Replication: sync data across multiple clusters (part 
of Riak Enterprise, see http://basho.com/riak-enterprise/)
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Handoff

• If primary vnode is unavailable, request goes to a 
fallback vnode

• Fallback vnode holds data on behalf of the unavailable 
primary

• Fallback vnode watches for return of primary vnode

• When the primary returns, the fallback performs a 
handoff to transfer data to it
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N/R/W Values
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Cluster Throughput Under Extreme Load
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Latency Of Puts Under Extreme Load
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Let's Scale

• Scaling up/down in Riak means adding/removing nodes

• Adding: new nodes claim ring partitions

• Removing: existing nodes reclaim ring partitions from 
leaving nodes

• Handoff occurs to move data between nodes
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Throughput With Node Join/Leave

• Latencies also increase
• Increases in I/O, CPU, network congestion
• Potential for TCP incast problems
• Potential for client timeouts
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TCP Incast

• Affects many-to-one operations in datacenters

• In microbursts, senders overrun switch buffers, packets 
are dropped, senders back off and slow down

• Result is significant throughput collapse

• Affects systems like Riak because multiple vnodes (the 
many) often send messages nearly simultaneously to a 
coordinator (the one)
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experimental, Dec. 2012)
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LEDBAT
• Low Extra Delay Background Transport (RFC 6817, 

experimental, Dec. 2012)

• Quick reacting delay-based congestion control

• Uses one-way delay measurements to estimate data 
path queuing

• Adds low extra queuing delay to minimize interference 
with other flows

• Suitable for "background" tasks like bulk data transfer
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Micro Transport Protocol (uTP)

• LEDBAT congestion control, precedes the RFC

• Created in Internet2 research, implemented by Plicto, 
acquired by Bittorrent in 2006

• Bittorrent has been using uTP since 2009

• Their C++ library implementation is on github:
https://github.com/bittorrent/libutp
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Gen_utp

• Erlang interface matches 
standard library gen_tcp

• gen_utp module wraps 
access to the driver

• C++ driver code wraps 
libutp

• C++ driver also manages 
underlying UDP sockets

gen_utp

C++ driver code

libutp

UDP sockets
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Gen_utp Features
• Connection-oriented protocol

• uTP sockets represented via Erlang ports, same as for 
TCP and UDP

• Active modes: false, true, once

• Binary or list data delivery

• Supports sending iolists

• IPv4 and IPv6
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Gen_utp Features

• Packet option (raw, 0, 1, 2, 4)

• Message headers (first N bytes of each message 
delivered as a list)

• Network interface binding

• Attach to already-open UDP socket file descriptor
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Gen_utp Functions
• listen, accept, async_accept

• connect

• send, recv

• close

• sockname, peername, port

• setopts, getopts

• controlling_process
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Gen_utp Example
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Gen_utp Internals

• libutp is a C++ library, so the Erlang driver is also C++

• libutp works via callbacks

• libutp implements the uTP protocol, you have to supply 
all socket handling

• Sockets are UDP, libutp adds the protocol reliability

41Friday, June 14, 13



Gen_utp Internals

• Master branch has a C++ class hierarchy of Handlers

• Handlers implement socket handling, uTP handling, and 
Erlang port handling

• Development branch (not yet working) breaks these into 
parallel hierarchies of Handlers and Ports
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Handler Classes

• SocketHandler: handles UDP sockets

• a listener uses a SocketHandler

• UtpHandler: handles libutp callbacks

• derived from SocketHandler
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Handling Events

• UDP sockets are registered in the Erlang runtime's 
polling set

• Erlang runtime calls SocketHandlers when sockets have 
input

• libutp also has a timeout check that the uTP driver calls 
every 10ms
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Port Classes
• DrvPort: abstract base class for all Port classes

• MainPort: implements initial port into uTP driver

• implements listen and connect calls

• SocketPort: base class for ports dealing with SocketHandlers

• ListenPort: port returned from listen calls

• UtpPort: base class for ports dealing with UtpHandlers

• AcceptPort: port returned from accept calls

• ConnectPort: port returned from connect calls
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Implementing Accept

• A uTP client "connects" to a uTP listener, but it's really 
connectionless UDP underneath

• TCP accept means "give me a new socket connected to 
that client", and we want the same semantics
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Implementing Accept
• For incoming connection requests:

• open a new accept socket sharing the listen port (using 
SO_REUSEADDR or SO_REUSEPORT)

• connect(2) the UDP accept socket to the client (yes, 
connect works for UDP too)

• any subsequent traffic from that client is seen only by the 
accept socket

• all sends on the accept socket go only to that client (i.e., 
using send vs. sendto)
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Implementing Accept

• Unlike inet_drv, the uTP driver uses the driver queue for 
reads, not writes

• Implementing {active,false} or {active,once} for TCP just 
means deselecting the socket

• uTP driver always has to read all incoming messages to 
check if they're uTP messages, so it never deselects

• driver queue stores read messages not yet delivered 
up through gen_utp
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Shortcomings
• No good way to implement a listen queue

• uTP client will just timeout if nobody's accepting

• uTP is slow when closing a socket, seems to want to 
exchange a bunch of messages

• libutp is not thread-safe, all access must be serialized

• Getting lifetimes of sockets, Erlang ports, and C++ handler 
instances right is hard

• hoping the Handler/Port split will help
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Gen_utp Testing

• Definitely a work in progress!

• Integrated with Riak some months ago on a branch

• successfully performed small-scale handoff

• but no large-scale Riak testing yet
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Gen_utp Testing

• With direct Ethernet connection between two systems:

• same throughput as gen_tcp at 10baseT

• same throughput as gen_tcp at 100baseT

• 2x slower than gen_tcp at 1000baseT

• gen_utp shows higher CPU in all cases, most likely due 
to copying forced by libutp callback interface
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Gen_utp Testing

• Lower throughput on fast networks could be a 
showstopper, since datacenter LANs are usually fast

• Always deferring to TCP flows might not always be 
desirable, for example:

• when adding nodes to scale a cluster that's struggling 
to keep up with load

• you want data transfer to happen as quickly as 
possible so the new nodes help manage load
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Current Status

• gen_utp available at
https://github.com/basho-labs/gen_utp

• It mostly works but:

• recent updates for Erlang R16B introduced bugs on 
master related to binary vs. list delivery

• current development branch (Handler/Port split) still 
needs work
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Next Steps

• Next step: testing on a Riak cluster under load

• Redesign the driver to work with Erlang's prim_inet layer

• this should allow SSL to work over uTP

• If it doesn't help with congestion, consider using it for 
Riak Enterprise multi-datacenter syncing over WANs
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• Jesper Louis Andersen (@jlouis) wrote a partial pure 
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp
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• I didn't use it because I thought libutp would make 
things easier, and because I can layer SSL over a driver
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Related Work

• Jesper Louis Andersen (@jlouis) wrote a partial pure 
Erlang implementation of uTP:
https://github.com/jlouis/erlang-utp

• He basically reverse engineered libutp

• I didn't use it because I thought libutp would make 
things easier, and because I can layer SSL over a driver

• He's stopped work on it but is willing to entertain pull 
requests :)
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THANKS

http://basho.com
@stevevinoski
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