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Let's make a website!



  

I have <? PHP ?>

 It is on this machine.
 Everyone uses it.
 So it must be good.
 Let’s use it... (and think later)



  

I use <? PHP ?>
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I use <? PHP ?>



  

What happened?

 I got mentioned on popular blog
 Too many PHP+Apache processes
 Melt down



  

I can use PHP!

 Of course you can
 Use more hardware
 Use caching proxy
 Use xyz and a bit of abc
 Add complexity
 And keep it all running, all the time



  

Same for RoR, Django...

 The problem is not that you can’t scale

 The problem is that you need to scale 
immediately



  

Yur site got /.'ed!

 Many people followed popular link
 A process per request
 Death by too many processes
 ... doing the same thing!



  

Most websites are...

 quite small 
 e.g. less than a million pages
 except for a couple of huge ones

 not visited that much
 e.g. less than 10 pages per second
 Unless linked to from popular place
 Relative small set of “hot data”



  

That's why we are making Zotonic.



  

Zotonic's goals

 The frontender is in the driver's seat
 Reliable performance

 A web server should easily handle the load of 99% of 
all web sites

 Maximise the use of hardware, do more with less 
hardware and less watts

 Self-contained, sysadmin friendly
 No external services, CDN's, caching servers, 

background workers.., and, no downtime



  

So, what's in the box?



  

So, what's in the box?

 Well, a lot :-P



  

So, what's in the box?

 Multiple sites
 Admin interface
 User management
 Page management
 Menu editor
 Commenting
 Image management
 Video embedding

 i18n
 E-mail sending, 

receiving (!)
 Importer modules
 REST API
 …
 You name it, we 

(probably) got it :)



  

The request stack



  

Steps for a request

 Accept
 Parse
 Dispatch 

 (match host, URL, controller)
 Render template

 (fetch data)
 Serve the result



  

Where is the time spent?

 Simple request: 7.5k/sec
 Template rendering request: 10ms
 Lots of content: a lot less :p
 Fetching data & rendering should be optimized



  

What takes time?

 Fetch data from database
 Simple query roundtrip takes 1 – 10 ms

 Fetch data from caching server
 Network roundtrip = 0.5 ms

 So: do not hit the network or the database



  

What saves time?

 Don't repeat things that you could have done a 
long time ago

 HTML escaping
 Content filtering
 (Zotonic stores sanitized / escaped content)



  

What saves time? pt II

 Combine similar (and especially simultaneous) 
actions into one

 Requests
 DB results
 calculations...



  

Where can we save time

 Client-side caching
 Static files
 Templates
 In-memory caching



  

Client-side

 Let client (and proxies) cache css, javascript, 
images etc.

 Combine css and javascript requests:
 http://example.org/lib/bootstrap/css/b
ootstrap~bootstrap-responsive~bootstra
p-base-site~/css/jquery.loadmask~z.gro
wl~z.modal~site~63523081976.css



  

Static files

 File requests are easily cached
 Checks on modification dates
 Cache both compressed and uncompressed 

version
 Still access control checks for content (images, 

pdfs etc.)



  

Templates

 Drive page rendering
 Compiled into Erlang byte code
 Using ErlyDTL

 Forked; we're merging it back



  

Template 101

Hello, {{ m.rsc[123].title }}

This is the id of your first image:
{{ m.rsc[123].o.depiction[1] }}

Search query:
{% for id in m.search[{query cat='person'}] %}
...

 Call the models – models responsible for caching 
those results



  

Template caching

{% include “_template.tpl” maxage=100 %}

 and

{% cache 3600 vary=z_language %}
  This gets cached per language for an hour
{% endcache %}

 Whole and partial caching possible
 Maxage in dispatch rules

{page, [“hello”], controller_template,
 [{template, “hello.tpl”}, {maxage, 3600}]}



  

In-memory caching

1) Memo cache in process dictionary of the 
request  process

2) Central shared cache for the whole site 
(“depcache”)



  

Memo cache

 In process heap of request handler
 Quick access to often used values
 Resources, ACL checks etc.
 Flushed on writes and when growing too big



  

Depcache

 Central cache per site
 ETS based

 Key dependencies for consistency
 Garbage collector thread

 Simple random eviction
 Sharing non-cached results between processes

z_depcache:memo(fun() … end, 0, Context)



  

Erlang VM considerations

 Cheap processes
 Expensive data copying on messages
 Binaries have their own heap
 String processing is expensive

 (as in any language)



  

Erlang VM and Zotonic

 Big data structure, #context{}
 Do most work in a single process
 Prune #context{} when messaging 

 z_context:prune_for_{database, template, async}/1
 Messaging binaries is ok



  

Aside: Webmachine

 We created a fork, webZmachine
 No dispatch list copying
 No Pmods
 Memo of some lookups
 Optimizations (process dictionary removal, 

combine data structures)
 Custom dispatcher (different way of treating 

vhosts)



  

Slam dunk protection

 Happens on startup, change of images, 
templates, memory cache flush etc.

 Let individual requests fail
 Build in artificial bottlenecks

 Single template compiler process
 Single image resize process
 Memo cache – share computations

 mod_failwhale
 Measure system load, serve 503 page, retry-after



  

So, what about performance?

http://www.techempower.com/benchmarks/ 

http://www.techempower.com/benchmarks/


  

How important are these, really?

 JSON test
 Spit out “hello world” in json

 What are you testing?
 HTTP parsing?
 JSON encoding?
 Your TCP/IP stack?

 Well, OK, Zotonic does NOT do so well...



  

Platform x1000 req/sec

Node.js 27

Cowboy 31

Elli 38

Zotonic 5.5

Zotonic w/o logging 7.5

Zotonic w/ dispatcher process pool 8.5

Some numbers

i7 quadcore  M620 @ 2.67GHz

wrk -c 3000 -t 3000 http://localhost:8080/json



  

Techempower conclusions

 We can improve some stuff
 Compiled dispatch rule / host matching
 Migrate to webserver that handles binaries (Elli or 

Cowboy)
 Merge Webzmachine ReqData/Context params
 Caching template timestamps – speedup freshness 

check
 Not every framework implements the same test.
 Pose artificial restrictions on the tests?

 Zotonic's memory-caching is fast...



  

A recent project



  

Kroonappels

 Nation-wide voting weekend
 Client requested 100% availability + high 

performance
 100k “votes” in 1 hour

 3x Rackspace VPS nodes, 2 GB, load balanced



  

Kroonappels

 1 vote was about 30 requests
 Dynamic i18n HTML
 Ajax
 Static assets

 Load test needed adjustments
 Did not push to the max

 Stopped at 500k votes / hr; 1.5M req/hr
 Customer satisfied :-)



  



  

Kroonappels – made with Zynamo

 Data layer
 Distribution ring based on Dynamo principles
 Consistent hashing, work distribution
 Service architecture w/ GET/PUT/DELETE semantics
 Like riak_core without vnodes



  

Service oriented



  

Zynamo's downside

 Hard...
 to maintain, 
 to do caching
 to write new stuff
 there are DBMS's that can do this for us

 Got us thinking: Do we really need this scale?



  

What do we want?

 Multiple machines, but for error recovery
 Hardware errors
 Hardware upgrades

 Hot failover



  

The P2P idea

 Trusted P2P ring of collaborative Zotonic 
machines

 Reliable messaging / notification 
 Poldercast P2P model

 Synced database backups / assets
 Bittorrent protocol for large files
 WAL for db delta's

 Sites are vertical, data silo's
 Run our own DNS?



  

Thank you!

 Book chapter: “The performance of Open Source 
Applications” coming out soon (
http://www.aosabook.org/)

 …and chat with me & Andreas :-)
 Come get a tshirt!

 Online resources:
 http://zotonic.com
 @zotonic - http://twitter.com/zotonic 
 IRC, XMPP, mailing lists
 Talk slides, tutorial slides, tutorial source code...

http://www.aosabook.org/
http://zotonic.com/
http://twitter.com/zotonic
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