

Zotonic

Making it fast!
Zotonic & performance

Erlang User Conference,
Stockholm, June 14 2013

Arjan Scherpenisse - arjan@miraclethings.nl

mailto:arjan@miraclethings.nl

Let's make a website!

I have <? PHP ?>

 It is on this machine.
 Everyone uses it.
 So it must be good.
 Let’s use it... (and think later)

I use <? PHP ?>

I use <? PHP ?>

I use <? PHP ?>

What happened?

 I got mentioned on popular blog
 Too many PHP+Apache processes
 Melt down

I can use PHP!

 Of course you can
 Use more hardware
 Use caching proxy
 Use xyz and a bit of abc
 Add complexity
 And keep it all running, all the time

Same for RoR, Django...

 The problem is not that you can’t scale

 The problem is that you need to scale
immediately

Yur site got /.'ed!

 Many people followed popular link
 A process per request
 Death by too many processes
 ... doing the same thing!

Most websites are...

 quite small
 e.g. less than a million pages
 except for a couple of huge ones

 not visited that much
 e.g. less than 10 pages per second
 Unless linked to from popular place
 Relative small set of “hot data”

That's why we are making Zotonic.

Zotonic's goals

 The frontender is in the driver's seat
 Reliable performance

 A web server should easily handle the load of 99% of
all web sites

 Maximise the use of hardware, do more with less
hardware and less watts

 Self-contained, sysadmin friendly
 No external services, CDN's, caching servers,

background workers.., and, no downtime

So, what's in the box?

So, what's in the box?

 Well, a lot :-P

So, what's in the box?

 Multiple sites
 Admin interface
 User management
 Page management
 Menu editor
 Commenting
 Image management
 Video embedding

 i18n
 E-mail sending,

receiving (!)
 Importer modules
 REST API
 …
 You name it, we

(probably) got it :)

The request stack

Steps for a request

 Accept
 Parse
 Dispatch

 (match host, URL, controller)
 Render template

 (fetch data)
 Serve the result

Where is the time spent?

 Simple request: 7.5k/sec
 Template rendering request: 10ms
 Lots of content: a lot less :p
 Fetching data & rendering should be optimized

What takes time?

 Fetch data from database
 Simple query roundtrip takes 1 – 10 ms

 Fetch data from caching server
 Network roundtrip = 0.5 ms

 So: do not hit the network or the database

What saves time?

 Don't repeat things that you could have done a
long time ago

 HTML escaping
 Content filtering
 (Zotonic stores sanitized / escaped content)

What saves time? pt II

 Combine similar (and especially simultaneous)
actions into one

 Requests
 DB results
 calculations...

Where can we save time

 Client-side caching
 Static files
 Templates
 In-memory caching

Client-side

 Let client (and proxies) cache css, javascript,
images etc.

 Combine css and javascript requests:
 http://example.org/lib/bootstrap/css/b
ootstrap~bootstrap-responsive~bootstra
p-base-site~/css/jquery.loadmask~z.gro
wl~z.modal~site~63523081976.css

Static files

 File requests are easily cached
 Checks on modification dates
 Cache both compressed and uncompressed

version
 Still access control checks for content (images,

pdfs etc.)

Templates

 Drive page rendering
 Compiled into Erlang byte code
 Using ErlyDTL

 Forked; we're merging it back

Template 101

Hello, {{ m.rsc[123].title }}

This is the id of your first image:
{{ m.rsc[123].o.depiction[1] }}

Search query:
{% for id in m.search[{query cat='person'}] %}
...

 Call the models – models responsible for caching
those results

Template caching

{% include “_template.tpl” maxage=100 %}

 and

{% cache 3600 vary=z_language %}
 This gets cached per language for an hour
{% endcache %}

 Whole and partial caching possible
 Maxage in dispatch rules

{page, [“hello”], controller_template,
 [{template, “hello.tpl”}, {maxage, 3600}]}

In-memory caching

1) Memo cache in process dictionary of the
request process

2) Central shared cache for the whole site
(“depcache”)

Memo cache

 In process heap of request handler
 Quick access to often used values
 Resources, ACL checks etc.
 Flushed on writes and when growing too big

Depcache

 Central cache per site
 ETS based

 Key dependencies for consistency
 Garbage collector thread

 Simple random eviction
 Sharing non-cached results between processes

z_depcache:memo(fun() … end, 0, Context)

Erlang VM considerations

 Cheap processes
 Expensive data copying on messages
 Binaries have their own heap
 String processing is expensive

 (as in any language)

Erlang VM and Zotonic

 Big data structure, #context{}
 Do most work in a single process
 Prune #context{} when messaging

 z_context:prune_for_{database, template, async}/1
 Messaging binaries is ok

Aside: Webmachine

 We created a fork, webZmachine
 No dispatch list copying
 No Pmods
 Memo of some lookups
 Optimizations (process dictionary removal,

combine data structures)
 Custom dispatcher (different way of treating

vhosts)

Slam dunk protection

 Happens on startup, change of images,
templates, memory cache flush etc.

 Let individual requests fail
 Build in artificial bottlenecks

 Single template compiler process
 Single image resize process
 Memo cache – share computations

 mod_failwhale
 Measure system load, serve 503 page, retry-after

So, what about performance?

http://www.techempower.com/benchmarks/

http://www.techempower.com/benchmarks/

How important are these, really?

 JSON test
 Spit out “hello world” in json

 What are you testing?
 HTTP parsing?
 JSON encoding?
 Your TCP/IP stack?

 Well, OK, Zotonic does NOT do so well...

Platform x1000 req/sec

Node.js 27

Cowboy 31

Elli 38

Zotonic 5.5

Zotonic w/o logging 7.5

Zotonic w/ dispatcher process pool 8.5

Some numbers

i7 quadcore M620 @ 2.67GHz

wrk -c 3000 -t 3000 http://localhost:8080/json

Techempower conclusions

 We can improve some stuff
 Compiled dispatch rule / host matching
 Migrate to webserver that handles binaries (Elli or

Cowboy)
 Merge Webzmachine ReqData/Context params
 Caching template timestamps – speedup freshness

check
 Not every framework implements the same test.
 Pose artificial restrictions on the tests?

 Zotonic's memory-caching is fast...

A recent project

Kroonappels

 Nation-wide voting weekend
 Client requested 100% availability + high

performance
 100k “votes” in 1 hour

 3x Rackspace VPS nodes, 2 GB, load balanced

Kroonappels

 1 vote was about 30 requests
 Dynamic i18n HTML
 Ajax
 Static assets

 Load test needed adjustments
 Did not push to the max

 Stopped at 500k votes / hr; 1.5M req/hr
 Customer satisfied :-)

Kroonappels – made with Zynamo

 Data layer
 Distribution ring based on Dynamo principles
 Consistent hashing, work distribution
 Service architecture w/ GET/PUT/DELETE semantics
 Like riak_core without vnodes

Service oriented

Zynamo's downside

 Hard...
 to maintain,
 to do caching
 to write new stuff
 there are DBMS's that can do this for us

 Got us thinking: Do we really need this scale?

What do we want?

 Multiple machines, but for error recovery
 Hardware errors
 Hardware upgrades

 Hot failover

The P2P idea

 Trusted P2P ring of collaborative Zotonic
machines

 Reliable messaging / notification
 Poldercast P2P model

 Synced database backups / assets
 Bittorrent protocol for large files
 WAL for db delta's

 Sites are vertical, data silo's
 Run our own DNS?

Thank you!

 Book chapter: “The performance of Open Source
Applications” coming out soon (
http://www.aosabook.org/)

 …and chat with me & Andreas :-)
 Come get a tshirt!

 Online resources:
 http://zotonic.com
 @zotonic - http://twitter.com/zotonic
 IRC, XMPP, mailing lists
 Talk slides, tutorial slides, tutorial source code...

http://www.aosabook.org/
http://zotonic.com/
http://twitter.com/zotonic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

