
Safetyvalve
Verified load regulation

Jesper Louis Andersen
Erlang Solutions Ltd.

jesper.louis.andersen@erlang-solutions.com

Jun, 2013



Overview

I What is Load regulation?

I How do you use safetyvalve (sv) ?

I How is it tested?



What is this about

I Overload protection

I Load regulation

I Load normalization

I Certify a system to a limit



Safetyvalve

I SV is a load regulation framework, like jobs or overload

I Ask the framework when you may run, do not run if it says no.



Safetyvalve .2

I concurrency how many may run at the same time

I queueing when the system is overloaded, enqueue extra work

I frequency rate at which work is started



Safetyvalve .3

I A Token Bucket Regulator Adds tokens which are needed to
dequeue

I There is a small surplus of tokens



Safetyvalve .4

I Queueing is necessary in some workloads and not relevant for
others.

I Set Queue Size to 0

I TBRs allows to take short bursts



CoDel queueing

I Experimental feature!

I Some queue is good, a standing queue is bad

I Leads to bufferbloat (TCP/IP is a grave example)

I Van Jacobson, Kathleen Nichols

I Arrival is not Poisson (2006)!



CoDel queueing .2

I Idea: measure sojourn time in the queue

I If too long a sojourn, begin rejecting work

I producer MUST react on work rejection and lower rate

I With a TCP-like additive rate component, this is self-tuning!



CoDel queueing .3

I Stamp packet on arrival

I On Dequeue, check time

I If above a target limit for too long, begin rejecting

I Details: “Controlling Queue Delay, 2012; Jacobson, Nichols”



Example

{safetyvalve,

{queues, [

{pg_q, [{hz, 500},

{rate, 20},

{token_limit, 30},

{size, 50},

{concurrency, 32}]}]}},



Example .2

with_pg(QueryFun) ->

{ok, C} = pg_pool:obtain_connection(),

QueryFun(C),

pg_pool:putback(C).



Example .3

run_query(QueryFun) ->

case sv:run(pg_q, fun() ->

with_pg(QueryFun)

end) of

{ok, Res} -> {ok, Res};

{error, Reason} -> {error, Reason}

end.

Internally, ask/done pairing



Manifesto

I Inspired loosely by the ’Dogme 95’ manifesto

I Know to Test before you code

I A Test is a QuickCheck model

I (Banish unit tests from the project)

I Any feature must be dogfooded by a real-world user

I Never discuss indentation



QuickChecking Safetyvalve

I Philosophy: Many small, naive test cases

I Use Erlang QuickCheck as an amplifier to make naive tests
powerful

I Prefer two tests each capturing different aspects



QuickChecking Safetyvalve

I Simplify!

I Trick 0: Do not care about post-conditions

I Trick 1: Degenerate model: Queue size=1, Concurrency=1,
Bucket size=1. Only then add more complexity

I Trick 2: Do not track, only count



QuickChecking Safetyvalve

I Simplify!

I Trick 0: Do not care about post-conditions

I Trick 1: Degenerate model: Queue size=1, Concurrency=1,
Bucket size=1. Only then add more complexity

I Trick 2: Do not track, only count



QuickChecking Safetyvalve .2.5

I Trick 3: Control Internal state, hack the code so it can be
queried

I Trick 4: Control time, inject it! Replenish tokens from the
model

I Trick 5: Issue command, wait until no more processes does
work (fixpoint)

I Fixpoint is handled by erlang:process info/1 by running it
twice and tracking reductions/state changes

I Trick 6: Simpler statem; only check the last thing you do.



QuickChecking Safetyvalve .2.5

I Trick 3: Control Internal state, hack the code so it can be
queried

I Trick 4: Control time, inject it! Replenish tokens from the
model

I Trick 5: Issue command, wait until no more processes does
work (fixpoint)

I Fixpoint is handled by erlang:process info/1 by running it
twice and tracking reductions/state changes

I Trick 6: Simpler statem; only check the last thing you do.



QuickChecking Safetyvalve .2.5

I Trick 3: Control Internal state, hack the code so it can be
queried

I Trick 4: Control time, inject it! Replenish tokens from the
model

I Trick 5: Issue command, wait until no more processes does
work (fixpoint)

I Fixpoint is handled by erlang:process info/1 by running it
twice and tracking reductions/state changes

I Trick 6: Simpler statem; only check the last thing you do.



QuickChecking Safetyvalve .2.5

I Trick 3: Control Internal state, hack the code so it can be
queried

I Trick 4: Control time, inject it! Replenish tokens from the
model

I Trick 5: Issue command, wait until no more processes does
work (fixpoint)

I Fixpoint is handled by erlang:process info/1 by running it
twice and tracking reductions/state changes

I Trick 6: Simpler statem; only check the last thing you do.



QuickChecking Safetyvalve .2

I 3 “bits” yields 8 different states

I There are 3 commands: replenish, ask for work, mark work
as done

I 24 possible states, many of them can be coalesced

I Reality: 10 cases to handle

I Doable in statem models



Example:

I Let {C ,K ,T} be Concurrency, Kueue (size), and Token
counts

I Queue, no tokens: {C , 0, 0} →q {C , 1, 0}
I Done, with tokens: {1, 1, 1} →d {1, 0, 0}
I Postconditions query to verify internal state



Generalize:

I Done, with tokens: {1, 1, 1} →d {1, 0, 0}
I Done, with tokens: {C ,K ,T} →d {C ,K − 1,T − 1}

where C > 0,K > 0,T > 0

I Add time to the model

I Add arbitrary process crashes to the model (new test case!)



I Has found 4-5 bugs already in literally no lines of code

I All the bugs were of the nasty-class

I 383 SLOCs (huge win!)

I CoDel also has an EQC model (Simple at the moment)

Example, if time allows



Questions

?


