
BEAMJIT, a Maze of Twisty Little Traces
A walk-through of the prototype just-in-time (JIT) compiler for

Erlang.

Frej Drejhammar
<frej@sics.se>

130613

Who am I?

Senior researcher at the Swedish Institute of Computer
Science (SICS) working on programming tools and distributed
systems.

What this talk is About

A brief introduction to the BEAM just-in-time compiler followed by
a walk-through of last year’s development.

Outline

Background
Just-In-Time Compilation
BEAM: Specification & Implementation
Project Goal
Tools

JIT:ing as it applies to BEAM
The BEAM JIT Prototypes
Future Work
Acknowledgements & Questions

Just-In-Time (JIT) Compilation

Decide at runtime to compile “hot” parts to native code.

Fairly common implementation technique

Python (Psyco, PyPy)
Smalltalk (Cog)
Java (HotSpot)
JavaScript (SquirrelFish Extreme, SpiderMonkey)

BEAM: Specification & Implementation

BEAM is the name of the Erlang VM.

A register machine.

Approximately 150 instructions which are specialized to
approximately 450 macro-instructions using a peephole
optimizer during code loading.

Hand-written C (mostly) directly threaded interpreter.

No authoritative description of the semantics of the VM
except the implementation source code!

Project Goal

Goals:

Do as little manual work as possible.
Preserve the semantics of plain BEAM.
Automatically stay in sync with the plain BEAM, i.e. if bugs
are fixed in the interpreter the JIT should not have to be
modified manually.
Have a native code generator which is state-of-the-art.

Plan:

Parse and extract semantics from the C implementation.
Transform the parsed C source to C fragments which are then
reassembled into a replacement interpreter which includes a
JIT-compiler.

HiPE vs JIT

Why would Erlang need a JIT-compiler, we already have HiPE?

Cross module optimization.

Native-code much larger than BEAM-code.

Tracing does not require switching to full emulation.

Modules stay target independent, simplifies deployment:

No need for cross compilation.
Binaries not strongly coupled to a particular build of the
emulator.

Tools

LLVM – A Compiler Infrastructure, contains a collection of
modular and reusable compiler and toolchain technologies.
Uses a low-level assembler-like representation called LLVM-IR.

Clang – A mostly gcc-compatible front-end for C-like
languages, produces LLVM-IR.

libclang – A C library built on top of Clang, allows the AST of
a parsed C-module to be accessed and traversed.

Just-In-Time (JIT) Compilation as it Applies to
BEAM

Use light-weight profiling to detect when we are at a place
which is frequently executed.

Trace the flow of execution until we get back to the same
place.

Compile trace to native code.

NOTE: We are tracing the execution flow in the interpreter,
the granularity is finer than BEAM opcodes.

Profile Trace Generate Native Code Run Native

BEAMJIT: What is Needed?

Three basic execution modes

Profiling
Tracing
Native

Interpreter loop has to be modified to support mode
switching:

Turn on/off tracing.
Passing state to/from native code.

Native code generation: Need the semantics for each
instruction.

Extracting the Semantics of the BEAM Opcodes

Use libclang to parse and simplify the interpreter source:

Flatten variable scopes.

Remove loops, replace by if + goto.

Make fall-troughs explicit.

Turn structured C into a spaghetti of Basic Blocks (BB), CFG
– Control Flow Graph.

Do liveness-analysis of variables.

bb_4090

bb_4097

bb_2488bb_4109

bb_4115 bb_4113 bb_4111

bb_4365

bb_4372

bb_3878

bb_3880

bb_3872

bb_4014

bb_4580

bb_4561

bb_4485

bb_4488bb_4413

bb_4420

i_bs_skip_bits2_fxrI

bb_4486

do_is_ne_exact_literal

bb_3900

bb_4500

bb_4481

bb_3764

bb_4401

i_bs_match_string_xfII

bb_4008

i_bs_get_float2_fxIsId

bb_4356 bb_4360 bb_4358

bb_4161

bb_4174

bb_4096

bb_4099

i_bs_skip_bits2_fryI

bb_4446 bb_4445

bb_3925

i_bs_get_binary2_frIsId

bb_4063 bb_4061

bb_4073

bb_4065

i_bs_get_utf8_rfd

bb_3911

bb_4067

bb_3898

bb_3894

bb_3896

bb_4130

bb_4138

bb_4320

bb_4327

bb_4521

bb_4517

bb_4126

bb_4557

bb_4140

bb_4143

i_bs_get_binary2_fxIsId

bb_4128

bb_4343

bb_4317

bb_3746

bb_3753bb_3752

bb_4075

bb_4077

bb_4454

bb_4390

bb_4362

bb_3851

bb_3854

bb_3852

bb_3860

bb_4477

bb_3745

bb_4540

bb_4448

bb_4460

bb_4345bb_4178

bb_4132

bb_3866

bb_3584

bb_3760

bb_3936 bb_4371

bb_4384

bb_4313

bb_4176

bb_4162

bb_4164

i_bs_get_integer_fIId

i_bs_skip_bits2_fxxI

bb_4525 bb_4526 bb_4406bb_4566

bb_4574

bb_4374

bb_3944 bb_4397

bb_4386

bb_4009

bb_4016bb_4015

bb_3884

bb_3883

is_function_fr

bb_4315

bb_4388

i_is_ne_exact_literal_yfc

bb_3788

bb_3794 bb_3792 bb_3790

bb_3950 bb_3784

bb_4329

bb_4326bb_3775

bb_3847

bb_3776

bb_3783

bb_3538

bb_4527

bb_3758

i_bs_start_match2_rfIId

bb_3919

bb_4076

bb_4155

bb_4084

bb_3762

bb_4311

bb_3921 bb_3923

bb_1636

i_bs_match_string_rfII

bb_4141

bb_4149

bb_4441

bb_4437

i_bs_get_float2_frIsId

bb_4568

bb_4339

bb_4341

bb_4493bb_4533

bb_4180

i_bs_get_utf8_xfd

i_bs_skip_bits2_frxI

bb_4405

i_bs_start_match2_yfIId i_bs_start_match2_xfIId

bb_4408

i_bs_skip_bits2_fxyI

bb_4565

Outline

Background
Just-In-Time Compilation
BEAM: Specification & Implementation
Project Goal
Tools

JIT:ing as it applies to BEAM
The BEAM JIT Prototypes
Future Work
Acknowledgements & Questions

BEAMJIT Evolution

Evolution since last year

Mk. I (EUC’12)
Mk. Ib
MK. II
MK. III
Mk. IV (EUC’13)

BEAMJIT Mk. I: Profiling

First step in figuring out what to JIT-compile

Let Erlang compiler insert profile instructions at places which
can be the head of a loop.
Count the number of times a function is executed.
Trigger tracing when count is high enough.
Eventually everything is compiled, this is BAD.

Requires implementing (by hand) the profile-instruction in the
interpreter.

BEAMJIT Mk. I: Tracing

Switch to a new version of the interpreter, generated from the
CFG.

For each basic block we pass through, record basic block
identity and PC.

Abort trace if too long.

If we reach the profile instruction we started the trace from –
We have found a loop!

BEAMJIT Mk. I: Profiling to Tracing Mode Switch

Direct
threading

0xCDAADEF0

0xCDAADEFF

0xCDAACAF8

0xCDAAD432

0xDEADBEEF

PC

x = x + 1;
...

0XCDAACAF8

Indirect threading
17

42

97

23

12

PC

x = x + 1;
...

0XCDAACAF8

95: 0xCBAADEF0

96: 0xCDAEDEFF

97: 0xCDAACAF8

98: 0xCDAAD432

99: 0xDEADBEEF

Profiling Opcodes

95: 0xCBBADEF0

96: 0xCBAEDEFF

97: 0xCBAACAF8

98: 0xCBAAD432

99: 0xDBADBEEF

Tracing Opcodes

record_trace_bb(4711, PC)
x = x + 1;
...

0XCBAACAF8

Have two implementations of each opcode.
Switch the table of opcodes.

BEAMJIT Mk. I: Cost of Indirect Threading

BEAMJIT Mk. I: Native-code Generation

Glue together LLVM-IR-fragments for the trace.

Guards are inserted to make sure we stay on the traced path.

Hand the resulting IR off to LLVM.

Fragments are extracted from the CFG as C-source, compiled
to IR using clang (at build-time) and loaded during system
initialization.

beam_emu.c CFG

fragments.c

jit_emu.c Trace

LLVM optimizer Native codeBitcode IR generator

BEAMJIT Mk. I: Calling Native Code

Interpreter → Native:

Interpreter: Copy live variables to a structure.
Native: Load vars into temporaries.

Native → Interpreter:

The reverse.
Jump to the BB to continue from.

BEAMJIT Mk. I: Performance

Depressing performance.

Running in pure interpreting mode, 6-7 times slower.

 x = ...;
 if (x != 0)
 x = x+ 1;
 else
 x = x - 1;
 ...

regX = ...
brZ bb1, bb0

...

bb0: bb1:

regX = ...
store(regx, @x)
brZ bb1, bb0

...

regX = load(@x)
dec regX
store(regX, @x)

bb1:
regX = load(@x)
inc regX
store(regX, @x)

bb0:

BEAMJIT Mk. Ib: First Useful

First version that could compile OTP without crashing and
pass the test suite.

Make profiler time-aware.

Measure execution intensity by including timestamp, count is
incremented if the function was executed recently, reset
otherwise.

Blacklist locations which:

Never produce a successful trace.
Where we leave the trace without executing the loop at least
once.

GC traces when they are no longer needed.

Minor performance improvements.

BEAMJIT Mk. II: Make it Easy for the Compiler

Modify the interpreter loop as little as possible.

Have separate trace interpreter.

Limit entry to the interpreter at instruction boundaries.

Have separate cleanup-interpreter to continue execution to
the next instruction boundary.

Profiling Tracing Native Cleanup

BEAMJIT Mk. II: Implementation Tricks

Use liveness information from the CFG.

Package native-code as a function where the arguments are
the live variables.

The cleanup-interpreter is a set of functions, one for each BB,
which tail-recursively calls the next BB. Arguments are the
live variables.

BEAMJIT Mk. II: Performance

Performance not stellar.

Sensitive to placement in source-code.

Should be possible to optimize further.

BEAMJIT Mk. III: Trace-Along

Appears that we quite often compile a trace which is not
representative.

Ensure that we have a representative trace: Trace-Along

Follow along a previously created trace.
Abort trace if we diverge.
Generate code when succeeded multiple times.

BEAMJIT Mk. IV: Multi-path

We blacklist many locations where trace-along repeatedly fails
to find a representative trace.

Allow multi-path traces.

Generate native code when the trace has not grown for N
successive iterations.

Slows down LLVM optimization and native code generation
significantly.

BEAMJIT Mk. IV: Trace Compression

LLVM slowdown appears to be related to the size of the CFG.

Inspection of traces shows loops and common segments.

Compress traces to remove shared segments.

BB=0
ip=0x4567

BB=1
ip=0x4567

BB=2
ip=0x4567

BB=3
ip=0x4568

BB=3
ip=0x4568

BB=4
ip=0x4569

BB=4
ip=0x4569

BB=0
ip=0x4567

BB=1
ip=0x4567

BB=2
ip=0x4567

BB=3
ip=0x4568

BB=4
ip=0x4569

BEAMJIT Mk. IV: Performance

Compilation overhead dwarfs everything else (-O2).

Future work: Figure out which optimization passes are needed.

BEAMJIT Mk. IV: Performance (cont.)

BEAMJIT Mk. IV: Performance (cont.)

Guards costly.

Not good where the common case cannot be on the fast path

Future Work

Do not fixate on finding loops

Allow traces which are runs rather than loops, ring
benchmarks.

Erlang-aware constant propagation:

Eliminate loads from code (constant at compile time).
Will eliminate loading of immediates.
Will eliminate many of the guards.

Increase performance in plain interpreting mode.

Run native-code generation in separate thread.

Extend trace outside the main interpreter loop, inside BIFs.

Outline

Background
Just-In-Time Compilation
BEAM: Specification & Implementation
Project Goal
Tools

JIT:ing as it applies to BEAM
The BEAM JIT Prototypes
Future Work
Acknowledgements & Questions

Acknowledgements

This work is funded by Ericsson AB.

Questions?

	Main Part
	Background
	Just-In-Time Compilation
	BEAM: Specification & Implementation
	Project Goal
	Tools

	JIT:ing as it applies to BEAM
	The BEAM JIT Prototypes
	Future Work
	Acknowledgements & Questions

