BEAMJIT, a Maze of Twisty Little Traces

A walk-through of the prototype just-in-time (JIT) compiler for
Erlang.

Frej Drejhammar
<frej@sics.se>

130613

Who am 17

@ Senior researcher at the Swedish Institute of Computer
Science (SICS) working on programming tools and distributed
systems.

What this talk is About

A brief introduction to the BEAM just-in-time compiler followed by
a walk-through of last year's development.

Outline

Background
Just-In-Time Compilation
BEAM: Specification & Implementation
Project Goal
Tools
JIT:ing as it applies to BEAM
The BEAM JIT Prototypes
Future Work
Acknowledgements & Questions

Just-In-Time (JIT) Compilation

@ Decide at runtime to compile “hot” parts to native code.
@ Fairly common implementation technique

Python (Psyco, PyPy)

Smalltalk (Cog)

Java (HotSpot)

JavaScript (SquirrelFish Extreme, SpiderMonkey)

BEAM: Specification & Implementation

@ BEAM is the name of the Erlang VM.
@ A register machine.

o Approximately 150 instructions which are specialized to
approximately 450 macro-instructions using a peephole
optimizer during code loading.

@ Hand-written C (mostly) directly threaded interpreter.

@ No authoritative description of the semantics of the VM
except the implementation source code!

Project Goal

o Goals:

e Do as little manual work as possible.

e Preserve the semantics of plain BEAM.

e Automatically stay in sync with the plain BEAM, i.e. if bugs
are fixed in the interpreter the JIT should not have to be
modified manually.

e Have a native code generator which is state-of-the-art.

e Plan:

e Parse and extract semantics from the C implementation.

e Transform the parsed C source to C fragments which are then
reassembled into a replacement interpreter which includes a
JIT-compiler.

HIPE vs JIT

Why would Erlang need a JIT-compiler, we already have HiPE?

@ Cross module optimization.

@ Native-code much larger than BEAM-code.

@ Tracing does not require switching to full emulation.

@ Modules stay target independent, simplifies deployment:
e No need for cross compilation.

e Binaries not strongly coupled to a particular build of the
emulator.

Tools

@ LLVM — A Compiler Infrastructure, contains a collection of
modular and reusable compiler and toolchain technologies.
Uses a low-level assembler-like representation called LLVM-IR.

@ Clang — A mostly gcc-compatible front-end for C-like
languages, produces LLVM-IR.

@ libclang — A C library built on top of Clang, allows the AST of
a parsed C-module to be accessed and traversed.

Just-In-Time (JIT) Compilation as it Applies to

BEAM

@ Use light-weight profiling to detect when we are at a place
which is frequently executed.

@ Trace the flow of execution until we get back to the same

place.

@ Compile trace to native code.

@ NOTE: We are tracing the execution flow in the interpreter,
the granularity is finer than BEAM opcodes.

Profile

Trace

Generate Native Code

»| Run Native

BEAMJIT: What is Needed?

@ Three basic execution modes

e Profiling
e Tracing
o Native

@ Interpreter loop has to be modified to support mode
switching:
e Turn on/off tracing.
o Passing state to/from native code.
@ Native code generation: Need the semantics for each
instruction.

Extracting the Semantics of the BEAM Opcodes

Use libclang to parse and simplify the interpreter source:
@ Flatten variable scopes.
@ Remove loops, replace by if + goto.
e Make fall-troughs explicit.
°

Turn structured C into a spaghetti of Basic Blocks (BB), CFG
— Control Flow Graph.

@ Do liveness-analysis of variables.

ANy ot

EachAN\R\&
= e
@D
@D

R

Outline

The BEAM JIT Prototypes

BEAMJIT Evolution

@ Evolution since last year
Mk. | (EUC’12)

Mk. Ib

MK. 1l

MK. 1l

Mk. IV (EUC'13)

BEAMJIT Mk. I: Profiling

o First step in figuring out what to JIT-compile
o Let Erlang compiler insert profile instructions at places which
can be the head of a loop.
o Count the number of times a function is executed.
o Trigger tracing when count is high enough.
o Eventually everything is compiled, this is BAD.

@ Requires implementing (by hand) the profile-instruction in the
interpreter.

BEAMJIT Mk. [: Tracing

@ Switch to a new version of the interpreter, generated from the
CFG.

@ For each basic block we pass through, record basic block
identity and PC.

@ Abort trace if too long.

@ If we reach the profile instruction we started the trace from —
We have found a loop!

BEAMJIT Mk. I: Profiling to Tracing Mode Switch

Direct Indirect threading
threading FC
PC 0XCDAADEFO 42

OXCDAADEFF L

OXCDAACAF8 23
12

O0xCDAADA432

OxDEADBEEF

Profiling Opcodes

| Tracing Opcodes
OXCDAACAF8 95: 0OXCBAADEFO 95: 0xCBBADEFO

X=X+1;

96: OXCDAEDEFF '\ {96: OXCBAEDEFF
97: OXCDAACAF8 '
98: 0XCDAAD432
99: OXxDEADBEEF

“-»97: OXCBAACAFS -
98: 0xCBAADA432
99: OXDBADBEEF

O0XCBAACAF8

record_trace_bb(4711, PC)
x=x+1;

OXCDAACAF8

@ Have two implementations of each opcode.
@ Switch the table of opcodes.

BEAMUJIT Mk. I: Cost of Indirect Threading

- Directly threaded
= incirectly threade|

..|1|.1| ,,}lhh‘IJJI‘LII,{.IIJ

EiiiicicigiiistiegEteisi st o S fcseeto el c3ebEeREt
Ll EE s e s B P T P e PG S U B E R R S E P ERBEEEEFRE

BECELegE i PE S8 E L FESET Ty SEFF g3E
EPEFfivEigegdcEy EEERD VG £

BEAMJIT Mk. I: Native-code Generation

Glue together LLVM-IR-fragments for the trace.

Hand the resulting IR off to LLVM.

Fragments are extracted from the CFG as C-source, compiled
to IR using clang (at build-time) and loaded during system
initialization.

°
@ Guards are inserted to make sure we stay on the traced path.
°
°

I beam_emu.c |—>| CFG

BEAMJIT Mk. I: Calling Native Code

@ Interpreter — Native:

o Interpreter: Copy live variables to a structure.
o Native: Load vars into temporaries.

o Native — Interpreter:

e The reverse.
e Jump to the BB to continue from.

BEAMJIT Mk. I: Performance

@ Depressing performance.

@ Running in pure interpreting mode, 6-7 times slower.

X =

if (x 1= 0)
X =X+ 1;
X=x-1; brZ bbl, bb0

brZ bb1, bb0
bb0: bb1:

[incregX] [incregX]

RS

bb0:

[rEgXi=Toad(@x]
inc regX dec regX
store(regX, @x) |

BEAMUJIT Mk. Ib: First Useful

@ First version that could compile OTP without crashing and
pass the test suite.
@ Make profiler time-aware.

@ Measure execution intensity by including timestamp, count is
incremented if the function was executed recently, reset
otherwise.

@ Blacklist locations which:

o Never produce a successful trace.
o Where we leave the trace without executing the loop at least
once.

@ GC traces when they are no longer needed.

@ Minor performance improvements.

BEAMUJIT Mk. Il: Make it Easy for the Compiler

Modify the interpreter loop as little as possible.

Have separate trace interpreter.

Limit entry to the interpreter at instruction boundaries.

Have separate cleanup-interpreter to continue execution to

the next instruction boundary.

Profiling

Tracing

»

Cleanup

BEAMJIT Mk. II: Implementation Tricks

@ Use liveness information from the CFG.
@ Package native-code as a function where the arguments are
the live variables.

@ The cleanup-interpreter is a set of functions, one for each BB,
which tail-recursively calls the next BB. Arguments are the
live variables.

BEAMJIT Mk. Il: Performance

@ Performance not stellar.
@ Sensitive to placement in source-code.
@ Should be possible to optimize further.

IHHL umHh.l‘n.l L!h l‘l.hl‘”llllmlll

BEAMJIT Mk. Ill: Trace-Along

@ Appears that we quite often compile a trace which is not
representative.
@ Ensure that we have a representative trace: Trace-Along

e Follow along a previously created trace.
e Abort trace if we diverge.
o Generate code when succeeded multiple times.

BEAMJIT Mk. IV: Multi-path

@ We blacklist many locations where trace-along repeatedly fails
to find a representative trace.

@ Allow multi-path traces.

@ Generate native code when the trace has not grown for N
successive iterations.

@ Slows down LLVM optimization and native code generation
significantly.

BEAMJIT Mk. IV: Trace Compression

@ LLVM slowdown appears to be related to the size of the CFG.
@ Inspection of traces shows loops and common segments.

@ Compress traces to remove shared segments.

BB=0 BB=0
ip=0x4567 ip=0x4567
BB=1 BB=1
ip=0x4567 ip=0x4567
) 2 \\
BB=3 BB=3 BB=3
ip=0x4568 ip=0x4568 ip=0x4568
A Y
BB=4
ip=0x4569

BEAMJIT Mk. IV: Performance

e Compilation overhead dwarfs everything else (-02).

@ Future work: Figure out which optimization passes are needed.

LT

300

3 200

~100—

BEAMJIT Mk. IV: Performance (cont.)

zzzs

(P I Il.lllll_l.‘...ll“......u

] a,.1u1“"1|1 ..,.,.111‘1

BEAMJIT Mk. IV: Performance (cont.)

o Guards costly.

@ Not good where the common case cannot be on the fast path

Future Work

@ Do not fixate on finding loops
o Allow traces which are runs rather than loops, ring
benchmarks.
o Erlang-aware constant propagation:
e Eliminate loads from code (constant at compile time).
e Will eliminate loading of immediates.
e Will eliminate many of the guards.
@ Increase performance in plain interpreting mode.
@ Run native-code generation in separate thread.
@ Extend trace outside the main interpreter loop, inside BIFs.

Outline

Acknowledgements & Questions

Acknowledgements

This work is funded by Ericsson AB.

Questions?

	Main Part
	Background
	Just-In-Time Compilation
	BEAM: Specification & Implementation
	Project Goal
	Tools

	JIT:ing as it applies to BEAM
	The BEAM JIT Prototypes
	Future Work
	Acknowledgements & Questions

