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Who am I?

Senior researcher at the Swedish Institute of Computer
Science (SICS) working on programming tools and distributed
systems.



What this talk is About

A brief introduction to the BEAM just-in-time compiler followed by
a walk-through of last year’s development.
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Just-In-Time (JIT) Compilation

Decide at runtime to compile “hot” parts to native code.

Fairly common implementation technique

Python (Psyco, PyPy)
Smalltalk (Cog)
Java (HotSpot)
JavaScript (SquirrelFish Extreme, SpiderMonkey)



BEAM: Specification & Implementation

BEAM is the name of the Erlang VM.

A register machine.

Approximately 150 instructions which are specialized to
approximately 450 macro-instructions using a peephole
optimizer during code loading.

Hand-written C (mostly) directly threaded interpreter.

No authoritative description of the semantics of the VM
except the implementation source code!



Project Goal

Goals:

Do as little manual work as possible.
Preserve the semantics of plain BEAM.
Automatically stay in sync with the plain BEAM, i.e. if bugs
are fixed in the interpreter the JIT should not have to be
modified manually.
Have a native code generator which is state-of-the-art.

Plan:

Parse and extract semantics from the C implementation.
Transform the parsed C source to C fragments which are then
reassembled into a replacement interpreter which includes a
JIT-compiler.



HiPE vs JIT

Why would Erlang need a JIT-compiler, we already have HiPE?

Cross module optimization.

Native-code much larger than BEAM-code.

Tracing does not require switching to full emulation.

Modules stay target independent, simplifies deployment:

No need for cross compilation.
Binaries not strongly coupled to a particular build of the
emulator.



Tools

LLVM – A Compiler Infrastructure, contains a collection of
modular and reusable compiler and toolchain technologies.
Uses a low-level assembler-like representation called LLVM-IR.

Clang – A mostly gcc-compatible front-end for C-like
languages, produces LLVM-IR.

libclang – A C library built on top of Clang, allows the AST of
a parsed C-module to be accessed and traversed.



Just-In-Time (JIT) Compilation as it Applies to
BEAM

Use light-weight profiling to detect when we are at a place
which is frequently executed.

Trace the flow of execution until we get back to the same
place.

Compile trace to native code.

NOTE: We are tracing the execution flow in the interpreter,
the granularity is finer than BEAM opcodes.

Profile Trace Generate Native Code Run Native



BEAMJIT: What is Needed?

Three basic execution modes

Profiling
Tracing
Native

Interpreter loop has to be modified to support mode
switching:

Turn on/off tracing.
Passing state to/from native code.

Native code generation: Need the semantics for each
instruction.



Extracting the Semantics of the BEAM Opcodes

Use libclang to parse and simplify the interpreter source:

Flatten variable scopes.

Remove loops, replace by if + goto.

Make fall-troughs explicit.

Turn structured C into a spaghetti of Basic Blocks (BB), CFG
– Control Flow Graph.

Do liveness-analysis of variables.
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BEAMJIT Evolution

Evolution since last year

Mk. I (EUC’12)
Mk. Ib
MK. II
MK. III
Mk. IV (EUC’13)



BEAMJIT Mk. I: Profiling

First step in figuring out what to JIT-compile

Let Erlang compiler insert profile instructions at places which
can be the head of a loop.
Count the number of times a function is executed.
Trigger tracing when count is high enough.
Eventually everything is compiled, this is BAD.

Requires implementing (by hand) the profile-instruction in the
interpreter.



BEAMJIT Mk. I: Tracing

Switch to a new version of the interpreter, generated from the
CFG.

For each basic block we pass through, record basic block
identity and PC.

Abort trace if too long.

If we reach the profile instruction we started the trace from –
We have found a loop!



BEAMJIT Mk. I: Profiling to Tracing Mode Switch

Direct
threading
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0xCDAADEFF
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0xCDAAD432

0xDEADBEEF

PC

x = x + 1;
...

0XCDAACAF8

Indirect threading
17

42
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23
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PC

x = x + 1;
...

0XCDAACAF8

95: 0xCBAADEF0

96: 0xCDAEDEFF

97: 0xCDAACAF8

98: 0xCDAAD432

99: 0xDEADBEEF

Profiling Opcodes

95: 0xCBBADEF0

96: 0xCBAEDEFF

97: 0xCBAACAF8

98: 0xCBAAD432

99: 0xDBADBEEF

Tracing Opcodes

record_trace_bb(4711, PC)
x = x + 1;
...

0XCBAACAF8

Have two implementations of each opcode.
Switch the table of opcodes.



BEAMJIT Mk. I: Cost of Indirect Threading



BEAMJIT Mk. I: Native-code Generation

Glue together LLVM-IR-fragments for the trace.

Guards are inserted to make sure we stay on the traced path.

Hand the resulting IR off to LLVM.

Fragments are extracted from the CFG as C-source, compiled
to IR using clang (at build-time) and loaded during system
initialization.

beam_emu.c CFG

fragments.c

jit_emu.c Trace

LLVM optimizer Native codeBitcode IR generator



BEAMJIT Mk. I: Calling Native Code

Interpreter → Native:

Interpreter: Copy live variables to a structure.
Native: Load vars into temporaries.

Native → Interpreter:

The reverse.
Jump to the BB to continue from.



BEAMJIT Mk. I: Performance

Depressing performance.

Running in pure interpreting mode, 6-7 times slower.

    x = ...;
    if (x != 0)
        x = x+ 1;
    else
        x = x - 1;
    ...

regX = ...
brZ bb1, bb0

...

bb0: bb1:

regX = ...
store(regx, @x)
brZ bb1, bb0

...

regX = load(@x)
dec regX
store(regX, @x)

bb1:
regX = load(@x)
inc regX
store(regX, @x)

bb0:



BEAMJIT Mk. Ib: First Useful

First version that could compile OTP without crashing and
pass the test suite.

Make profiler time-aware.

Measure execution intensity by including timestamp, count is
incremented if the function was executed recently, reset
otherwise.

Blacklist locations which:

Never produce a successful trace.
Where we leave the trace without executing the loop at least
once.

GC traces when they are no longer needed.

Minor performance improvements.



BEAMJIT Mk. II: Make it Easy for the Compiler

Modify the interpreter loop as little as possible.

Have separate trace interpreter.

Limit entry to the interpreter at instruction boundaries.

Have separate cleanup-interpreter to continue execution to
the next instruction boundary.

Profiling Tracing Native Cleanup



BEAMJIT Mk. II: Implementation Tricks

Use liveness information from the CFG.

Package native-code as a function where the arguments are
the live variables.

The cleanup-interpreter is a set of functions, one for each BB,
which tail-recursively calls the next BB. Arguments are the
live variables.



BEAMJIT Mk. II: Performance

Performance not stellar.

Sensitive to placement in source-code.

Should be possible to optimize further.



BEAMJIT Mk. III: Trace-Along

Appears that we quite often compile a trace which is not
representative.

Ensure that we have a representative trace: Trace-Along

Follow along a previously created trace.
Abort trace if we diverge.
Generate code when succeeded multiple times.



BEAMJIT Mk. IV: Multi-path

We blacklist many locations where trace-along repeatedly fails
to find a representative trace.

Allow multi-path traces.

Generate native code when the trace has not grown for N
successive iterations.

Slows down LLVM optimization and native code generation
significantly.



BEAMJIT Mk. IV: Trace Compression

LLVM slowdown appears to be related to the size of the CFG.

Inspection of traces shows loops and common segments.

Compress traces to remove shared segments.
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BEAMJIT Mk. IV: Performance

Compilation overhead dwarfs everything else (-O2).

Future work: Figure out which optimization passes are needed.



BEAMJIT Mk. IV: Performance (cont.)



BEAMJIT Mk. IV: Performance (cont.)

Guards costly.

Not good where the common case cannot be on the fast path



Future Work

Do not fixate on finding loops

Allow traces which are runs rather than loops, ring
benchmarks.

Erlang-aware constant propagation:

Eliminate loads from code (constant at compile time).
Will eliminate loading of immediates.
Will eliminate many of the guards.

Increase performance in plain interpreting mode.

Run native-code generation in separate thread.

Extend trace outside the main interpreter loop, inside BIFs.
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